Skip to main content
Log in

Induction of Wheat Resistance against the Causative Agent of Basal Bacteriosis with Growth-Promoting Bacteria

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Using a cell suspension of growth-promoting bacteria (Bacillus subtilis) in spring wheat plants of the Granny variety generates a 25% increase in the level of their resistance against the causative agent of basal bacteriosis (Pseudomonas syringae pv. atrofaciens). The study established the initiation of the synthesis of cell-wall biopolymers, in particular, cellulose, lignin, and suberin, and the accumulation of the content of oxycoric and oxybenzoic acids in plant leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Figueroa, M., Hammond-Kosack, K.E., and Solomon, P.S., A review of wheat diseases—a field perspective, Mol. Plant Pathol., 2018, vol. 19, no. 6, pp. 1523–1536. https://doi.org/10.1111/mpp.12618

    Article  PubMed  Google Scholar 

  2. Sundin, G.W., Castiblanco, L.F., Yuan, X., Zeng, Q., and Yang, C.H., Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 9, pp. 1506–1518. https://doi.org/10.1111/mpp.12436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kolomiiets, Y.V., Grygoryuk, I.P., Butsenko, L.M., and Kalinichenko, A.V., Biotechnological control methods against phytopathogenic bacteria in tomatoes, Appl. Ecol. Environ. Res., 2019, vol. 17, no. 2, pp. 3215–3230. https://doi.org/10.15666/aeer/1702_32153230

    Article  Google Scholar 

  4. Pfeilmeier, S., Caly, D.L., and Malone, J.G., Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 8, pp. 1298–1313. https://doi.org/10.1111/mpp.12427

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pasichnik, L.A., Savenko, E.A., Butsenko, L.N., Patyka, V.F., and Kalinichenko, A.B., Pseudomonas syringae in agrophytocenosis of wheat, Sci. World. Int. Sci. J., 2014, vol. 4, no. 8, pp. 52–56.

    Google Scholar 

  6. Butsenko, L.M., Pasichnyk, L.A., and Kolomiiets, Y.V., Biological properties of morphological dissociants Pseudomonas syringae pv. Atrofaciens, Biol. Syst.: Theory Innov., 2020, vol. 11, no. 1, pp. 28–37. https://doi.org/10.31548/biologiya2020.01.028

    Article  Google Scholar 

  7. Valencia-Botin, A.J. and Cisneros-Lopez, M.E., A review of the studies and interactions of Pseudomonas syringae pathovars on wheat, Int. J. Agronom., 2012, vol. 2012, pp. 1–5.https://doi.org/10.1155/2012/692350

    Article  Google Scholar 

  8. Tarkowski, P. and Vereecke, D., Threats and opportunities of plant pathogenic bacteria, Biotechnol. Adv., 2014, vol. 32, pp. 215–229. https://doi.org/10.1016/j.biotechadv.2013.11.001

    Article  PubMed  Google Scholar 

  9. Patyka, V.F., Phytopathogenic bacteria in contemporary agriculture, Microbiol. J., 2016, vol. 78, no. 6, pp. 71–83. https://doi.org/10.15407/microbiolj78.06.071

    Article  CAS  Google Scholar 

  10. Pieterse, M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., and Bakker, P.A.H.M., Induced systemic resistance by beneficial microbes, Ann. Rev. Phytopathol., 2014, vol. 52, pp. 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  Google Scholar 

  11. Nanda, A.K., Andrio, E., Marino, D., Pauly, N., and Dunand, C., Reactive oxygen species during plant-microorganism early interactions, J. Integr. Plant Biol., 2010, vol. 52, pp. 195–204. https://doi.org/10.1111/j.1744-7909.2010.00933.x

    Article  CAS  PubMed  Google Scholar 

  12. Ali, S., Ganai B.A., Kamili, A.N., Bhat, A.A., and Mir, Z.A., Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiol. Res., 2018, vol. 212– 213, pp. 29–37.https://doi.org/10.1016/j.micres.2018.04.008

  13. O’Brien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P., Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, 2012, vol. 236, pp. 765–779. https://doi.org/10.1007/s00425-012-1696-9

    Article  CAS  PubMed  Google Scholar 

  14. Singh, U.B., Malviya, D., Wasiullah, Singh, S., Pradhan, J.K., Singh, B.P., Roy, M., Imram, M., Pathak, N., Baisyal, B.M., Rai, J.P., Sarma, B.K., Singh, R.K., Sharma, P.K., Kaur, S.D., Manna, M.C., Sharma, S.K., and Sharma, A.K., Bioprotective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.), Microbiol. Res., 2016, vol. 192, pp. 300–312. https://doi.org/10.1016/j.micres.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  15. Bardin, M., Ajouz, S.,Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., and Nicot, P.C., Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?, Front. Plant Sci., 2015; vol. 6, p. 566. https://doi.org/10.3389/fpls.2015.00566

    Article  PubMed  PubMed Central  Google Scholar 

  16. Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., Smalla, K., and Berg, G., Bacillus and Streptomyces were selected as broad-spectrum antagonists against soil-borne pathogens from arid areas in Egypt, FEMS Microbiol. Lett., 2013, vol. 342, pp. 168–178. https://doi.org/10.1111/1574-6968.12089

    Article  CAS  PubMed  Google Scholar 

  17. Syed-Ab Rahman, S.F., Carvalhais, L.C., Chua, E., Xiao, Y., Wass, T.J., and Schenk, P.M., Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth, Front. Plant Sci., 2018, vol. 9, p. 1502.https://doi.org/10.3389/fpls.2018.01502

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shoaib, A., Awan, Z.A., and Khan, K.A., Intervention of antagonistic bacteria as a potential in-ducer of disease resistance in tomato to mitigate early blight, Sci. Hortic., 2019, vol. 252. pp. 20–28. https://doi.org/10.1016/j.scienta.2019.02.073

    Article  Google Scholar 

  19. Garcia-Fraile, P., Menendez, E., and Rivas, R., Role of bacterial biofertilizers in agriculture and forestry, AIMS Bioeng., 2015, no. 2, pp. 183–205. https://doi.org/10.3934/bioeng.2015.3.183

  20. Mnif, I., Ghribi, D., Potential of bacterial derived biopesticides in pest management, Crop Prot., 2015, vol. 77, pp. 52–64. https://doi.org/10.1016/j.cropro.2015.07.017

    Article  Google Scholar 

  21. Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., and Baymiev, A., Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables, Plants, 2019, no. 8, pp. 1–24. https://doi.org/10.3390/plants8040097

  22. Patyka, V.P., Pasichnyk, L.A., Hvozdiak, R.I., Petrychenko, V.F., Korniichuk, O.V., Butsenko, L.M., Zhytkevych, N.V., Dankevych, L.A., Lytvynchuk, O.A., Kyrylenko, L.V., Moroz, S.M., Huliaieva, H.B., Hnatiuk, T.T., Kalinichenko, A.V., and Kharkhota, M.A., in Phytopathogenic Bacteria. Research Methods, Vinnytsia: Vindruk, 2017, pp. 84–87.

    Google Scholar 

  23. Kolomiiets, Y., Grygoryuk, I., Likhanov, A., Butsenko, L., and Blume, Y., Induction of bacterial canker resistance in tomato plants using plant growth promoting rhizobacteria, Open Agricult. J., 2019, vol. 13. pp. 215–222. https://doi.org/10.2174/18743315019130-10215

    Article  CAS  Google Scholar 

  24. Pellicciari, C. and Biggiogera, M., Histochemistry of Single Molecules. Methods and Protocols, Humana Press, 2017, pp. 313–37.

    Book  Google Scholar 

  25. Zubairova, U.S. and Doroshkov, A.V., Wheat leaf epidermis pattern as a model for studying the influence of stressful conditions on morphogenesis, Vavilov. J. Genet. Breed., 2018; vol. 22, no. 7, pp. 837–844. https://doi.org/10.18699/VJ18.32-o

    Article  Google Scholar 

  26. Yang, C. and Ye, Z., Trichomes as models for studying plant cell differentiation, Cell. Mol. Life Sci., 2013, vol. 70, no. 11, pp. 1937–1948. https://doi.org/10.1007/s00018-012-1147-6

    Article  CAS  PubMed  Google Scholar 

  27. Goswami, D., Thakker, J.N., and Dhandhukia, P.C., Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review, Cogent. Food Agric., 2016, vol. 2, no. 1, pp. 1–19. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  28. Hashem, A., Tabassum, B., and Abd Allah, E.F., Bacillus subtilis: a plant-growth promoting Rhizobacterium that also impacts biotic stress, Saudi J. Biol. Sci., 2019, vol. 26, no. 6, pp. 1291–1297. doi 10.10l6/j.sjbs.2019.05.004

  29. Kudoyarova, G.R., Melentiev, A.I., Martynenko, E.V., Timergalina, L.N., Arkhipova, T.N., Shendel, G.V., Kuz’mina, L.Y., Dodd, I.C., and Veselov, S.Y., Cytokinin producing bacteria stimulate amino acid deposition by wheat roots, Plant Physiol. Biochem., 2014, vol. 83. pp. 285–291.https://doi.org/10.1016/j.plaphy.2014.08.015

  30. Sarma, B.K., Yadav, S.K., Singh, S., and Singh, H.B., Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy, Soil Biol. Biochem., 2015, vol. 87. pp. 25–33. doi 10.10l6/j.soilbio.2015.04.001

  31. Chowdappa, P., Kumar, S.M., Lakshmi, M.J., and Upreti, K., Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3, Biol. Contr., 2013, vol. 65, no. 1, pp. 109–117. https://doi.org/10.10l6/j.biocontrol.2012.11.009

  32. Martinez-Medina, A., Fernandez, I., Sanchez-Guzman, M.J., Jung, S.C., Pascual, J.A., and Pozo, M.J., Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato, Front. Plant Sci., 2013, vol. 4, pp. 1–12. https://doi.org/10.3389/fpls.2013.00206

    Article  Google Scholar 

  33. García-Gutiérrez, M.S., Ortega-Álvaro, A., Busquets-García, A., Pérez-Ortiz, J.M., Caltana, L., Ricatti, M.J., and Manzanares, J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors, Neuropharmacology, 2013, vol. 73, pp. 388–396. doi 10.10l6/j.neuropharm.2013.05.034

  34. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents, Genet. Mol. Biol., 2012, vol. 35, no. 4, pp. 1044–1051. https://doi.org/10.1590/sl415-47572012000600020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kachroo, A. and Robin, G.P., Systemic signaling during plant defense, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 527–533. doi 10.10l6/j.pbi.2013.06.019

  36. Zeng, Y., Himmel, M.E., and Ding, S.-Y., Visualizing chemical functionality in plant cell walls, Biotechnol. Biofuels, 2017, vol. 10, p. 263. https://doi.org/10.1186/sl3068-017-0953-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the project titled Induced Resistance and Control of Phytopathogenic Bacteria in Novel Biotechnologies for the Growth of Vegetable Crops Using Growth Stimulators with Elicitor Activity (2020–2023) state registration no. 0120U102106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Kolomiiets.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomiiets, Y.V., Grigoryuk, I.P., Likhanov, A.F. et al. Induction of Wheat Resistance against the Causative Agent of Basal Bacteriosis with Growth-Promoting Bacteria. Cytol. Genet. 54, 514–521 (2020). https://doi.org/10.3103/S0095452720060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720060067

Keywords:

Navigation