Skip to main content
Log in

Calcium-Dependent Changes in Cellular Redox Homeostasis and Heat Resistance of Wheat Plantlets under Influence of Hemin (Carbon Monoxide Donor)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is considered to be an important molecule-gasotransmitter involved in the regulation of the functional activity of plants, including in the processes of adaptation to stress factors. However, the associations of CO with other participants of signaling in the plant cells remain poorly studied. Using an inhibitory method, the role of different calcium pools in realization of the influence of hemin (carbon monoxide donor) on generation and neutralization of reactive oxygen species (ROS) in the root cells of wheat (Triticum aestivum L.) plantlets and their resistance to damaging heating (45°C, 10 min) was studied. The treatment of plantlets with 5 μM hemin caused a transient increase in the activity of extracellular peroxidase in roots and an increase in the generation of ROS with the maximum in 1.5–2 h after the beginning of treatment. The chelator of extracellular calcium EGTA and the inhibitor of inositol-1,4,5-phosphate formation neomycin, which reduces calcium influx into the cytosol from intracellular compartments, almost completely eliminated an increase in the activity of extracellular peroxidase caused by exogenous CO. At the same time, EGTA (completely) and neomycin (partially) leveled an increase in the content of hydrogen peroxide in the roots of plantlets occurring under the influence of CO donor. The treatment of plantlets with hemin also induced an increase in the activity of superoxide dismutase, catalase, and intracellular peroxidase in roots. Both calcium antagonists eliminated these effects. In the presence of EGTA and neomycin, there was also no positive effect of the treatment of hemin on the state of biomembranes and survival of plantlets after the damaging heating. It was concluded that both extracellular calcium and that deposited in intracellular compartments is involved in CO donor-induced increase in the formation of ROS, induction of the antioxidant system, and development of heat resistance of wheat plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. He, H. and He, L., The role of carbon monoxide signaling in the responses of plants to abiotic stresses, Nitric Oxide, 2014, vol. 42, pp. 40–43.https://doi.org/10.1016/j.niox.2014.08.011

  2. Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., and Yannarelli, G.G., Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultra-violet-B-irradiated soybean plants. Phytochemistry, 2010, vol. 71, no. 14–5, pp. 1700–1707. https://doi.org/10.1016/j.phytochem.2010.07.009

  3. Lin, Y.T., Zhang, W., Qi, F., Cui, W.T., Xie, Y.J., and Shen, W.B., Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/ carbon monoxide-dependent manner, J. Plant Physiol., 2014, vol. 171, no. 2, pp. 1–8. https://doi.org/10.1016/j.jplph.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  4. Xie Y.J., Zhang C., Lai D.W., Sun Y., Samma M.K., Zhang J., and Shen W., Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression, J. Plant Physiol., 2014, vol. 171, no. 2, pp. 53–62. https://doi.org/10.1016/j.jplph.2013.09.018

    Article  CAS  PubMed  Google Scholar 

  5. Dekker, J. and Hargrove, M., Weedy adaptation in Setaria spp. V. Effects of gaseous environment on giant foxtail (Setaria faberii) (Poaceae) seed germination, Am. J. Bot., 2002, vol. 89, no. 3, pp. 410–416. https://doi.org/10.3732/ajb.89.3.410

    Article  CAS  PubMed  Google Scholar 

  6. Cui, W.T., Qi, F., Zhang, Y.H., Cao, H., Zhang, J., Wang, R., and Shen, W., Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways, Plant Cell Rep., 2015, vol. 34, no. 3, pp. 435–445. https://doi.org/10.1007/s00299-014-1723-3

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Y., Wang, M., Hu, L., Liao, W., Dawuda, M.M., and Li, C., Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress, Front. Plant Sci., 2017, vol. 8, p. 128. https://doi.org/10.3389/fpls.2017.00128

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang, J., Han, B., Xu, S., Zhou, M., and Shen, W., Heme oxygenase-1 is involved in the cytokinin-induced alleviation of senescence in detached wheat leaves during dark incubation, J. Plant Physiol., 2011, vol. 168, no. 8, pp. 768–775. https://doi.org/10.1016/j.jplph.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, S., Li, Y., and Pei, F., Carbon monoxide fumigation improved the quality, nutrients, and antioxidant activities of postharvest peach, Int. J. Food Sci., 2014, vol. 2014, 834150. https://doi.org/10.1155/2014/834150

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kolupaev, Yu.E., Karpets, Yu.V., Beschasniy, S.P., and Dmitriev, A.P., Gasotransmitters and their role in adaptive reactions of plant cells, Cytol. Genet., 2019, vol. 53, no. 5, pp. 392–406. https://doi.org/10.3103/S0095452719050098

    Article  Google Scholar 

  11. Shekhawat, G.S. and Verma, K., Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defense, J. Exp. Bot., 2010, vol. 61, no. 9, pp. 2255–2270. https://doi.org/10.1093/jxb/erq074

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Xu, S., Ling, T., Xu, L., and Shen, W., Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway, J. Plant Physiol., 2010, vol. 167, no. 16, pp. 1371137–9. https://doi.org/10.1016/j.jplph.2010.05.021

    Article  CAS  Google Scholar 

  13. Wei, M.Y., Chao, Y.Y., and Kao, C.H., NaCl-induced heme oxygenase in roots of rice seedlings is mediated through hydrogen peroxide, Plant Growth Regul., 2013, vol. 69, pp. 209–214. https://doi.org/10.1007/s10725-012-9762-7

    Article  CAS  Google Scholar 

  14. He, H. and He, L., Heme oxygenase 1 and abiotic stresses in plants, Acta Physiol. Plant., 2014, vol. 36, pp. 581–588. https://doi.org/10.1007/s11738-013-1444-1

    Article  CAS  Google Scholar 

  15. Verma, K., Dixit, S., Shekhawat, G.S., and Alam, A., Antioxidant activity of heme oxygenase 1 in Brassica juncea (L.) Czern. (Indian mustard) under salt stress, Turk. J. Biol., 2015, vol. 39, pp. 540–549. https://doi.org/10.3906/biy-1501-28

    Article  CAS  Google Scholar 

  16. Bai, X., Chen, J., Kong, X., Todd, C.D., Yang, Y., Hu, X., and Li, D.Z., Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis, Free Radica. Biol. Med., 2012, vol. 53, pp. 710–720. https://doi.org/10.1016/j.freeradbiomed.2012.05.042

    Article  CAS  Google Scholar 

  17. Cheng, T., Hu, L., Wang, P., Yang, X., Peng, Y., Lu, Y., Chen, J., Shi, J., Carbon monoxide potentiates high temperature-induced nicotine biosynthesis in Tobacco, Int. J. Mol. Sci., 2018, vol. 19, no. 1, p. 188. https://doi.org/10.3390/ijms19010188

    Article  CAS  PubMed Central  Google Scholar 

  18. Ling, T., Zhang, B., Cui, W., Wu, M., Lin, J., Zhou, W., Huang, J., and Shen, W., Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction, Plant Sci., 2009, vol. 177, no. 4, pp. 331–340. https://doi.org/10.1016/j.plantsci.2009.06.004

    Article  CAS  Google Scholar 

  19. Meng, D.K., Chen, J., and Yang, Z.M., Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide, J. Hazard. Mater., 2011, vol. 186, no. 2–3, pp. 1823–1829.https://doi.org/10.1016/j.jhazmat.2010.12.062

  20. Li, Z.G. and Gu, S.P., Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension, Biol. Plant., 2016, vol. 60, no. 3, pp. 595–600. https://doi.org/10.1007/s10535-016-0612-8

    Article  CAS  Google Scholar 

  21. Yuan, X.X., Wang, J., Xie, Y.J., and Shen, W.B., Effects of carbon monoxide on salt tolerance and proline content of roots in wheat seedling, Plant Physiol. Commun., 2009, vol. 45, no. 6, pp. 567–570.

    CAS  Google Scholar 

  22. She, X.P., Song, X.G., Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells, J. Integr. Plant Biol., 2008, vol. 50, no. 12, pp. 1539–1548. doi 10.1111/j.1744-7909.2008.00716.x

  23. Glyan’ko, A.K. and Ischenko, A.A., Structural and functional characteristics of plant NADPH oxidase: a review, Appl. Biochem. Microbiol., 2010, vol. 46, no. 5, pp. 463–471. https://doi.org/10.1134/S0003683810050017

    Article  CAS  Google Scholar 

  24. Sharova, E.I. and Medvedev, S.S., Redox reactions in apoplast of growing cells, Russ. J. Plant Physiol., 2017, vol. 64, no. 1, pp. 1–14. https://doi.org/10.1134/S1021443717010149

    Article  CAS  Google Scholar 

  25. Minibayeva, F., Kolesnikov, O., Chasov, A., Beckett, R.P., Lüthje, S., Vylegzhanina, N., Buck, F., and Böttger, M., Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species, Plant Cell Environ., 2009, vol. 32, no. 5, pp. 497–508. https://doi.org/10.1111/j.1365-3040.2009.01944.x

    Article  CAS  PubMed  Google Scholar 

  26. Xuan, W., Huang, L., Li, M., Huang, B., Xu, S., Liu, H., Gao, Y., and Shen, W., Induction of growth elongation in wheat root segments by heme molecules: a regulatory role of carbon monoxide in plants?, Plant Growth Regul., 2007, vol. 52, no.1, pp. 41–51. https://doi.org/10.1007/s10725-007-9175-1

    Article  CAS  Google Scholar 

  27. Wilkinson, W.J., Kemp, P.J. Carbon monoxide: an emerging regulator of ion channels, J. Physiol., 2011, vol. 589, no. 13, pp. 3055–3062. doi . 2011.206706https://doi.org/10.1113/jphysiol

  28. Sa, Z.S., Huang, L.Q., Wu, G.L., Ding, J.P., Chen, X.Y., Yu, T., Ci, S., and Shen, W.B., Carbon monoxide: a novel antioxidant against oxidative stress in wheat seedling leaves, J. Integr. Plant Biol., 2007, vol. 49, no. 5, pp. 638–645. https://doi.org/10.1111/j.1744-7909.2007.00461.x

    Article  CAS  Google Scholar 

  29. Hsu, Y.Y., Chao, Y.Y., and Kao, C.H., Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase, J. Plant Physiol., 2013, vol. 170, no. 12, pp. 1075–1081. doi . jplph.2013.03.004

  30. Hsu, Y.Y., Chao, Y.Y., and Kao, C.H., Methyl jasmonate-induced lateral root formation in rice: The role of heme oxygenase and calcium, J. Plant Physiol., 2013, vol. 170, no. 1, pp. 63–69. https://doi.org/10.1016/j.jplph.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  31. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., and Kuchitsu, K., Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation, J. Biol. Chem., 2008, vol. 283, no. 14, pp. 8885–8892. https://doi.org/10.1074/jbc.M708106200

    Article  CAS  PubMed  Google Scholar 

  32. Gazaryan, I.G., Khushpul’yan, D.M., and Tishkov, V.I., Structural features and mechanism of action of plant peroxidases, Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.

    CAS  Google Scholar 

  33. Demidchik, V., Reactive oxygen species and oxidative stress in plants, in Plant Stress Physiology, Shabala, S., Ed., CAB International, 2012, pp. 24–58. https://doi.org/10.1079/9781845939953.0024

    Book  Google Scholar 

  34. Shkliarevskyi, M.A., Kolupaev, Yu.E., Karpets, Yu.V., Shvidenko, M.V., and Dmitriev, O.P., Influence of carbon monoxide (CO) donor on heat resistance of wheat plantlets and generation of reactive oxygen species by them, Dopov. Nac. Akad. Nauk Ukr., 2020, no. 8, pp. 73–80.https://doi.org/10.15407/dopovidi2020.08.073

  35. Kolupaev, Yu.E., Oboznyi, A.I., and Shvidenko, N.V., Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings, Russ. J. Plant Physiol., 2013, vol. 60, no. 2, pp. 227–234. https://doi.org/10.1134/S102144371302012X

    Article  CAS  Google Scholar 

  36. Minibayeva, E.V., Gordon, L.K., Kolesnikov, O.P., and Chasov A.V., Role of extracellular peroxidase in the superoxide production by wheat root cells, Protoplasma, 2001, vol. 217, nos. 1–3, pp. 125–128. https://doi.org/10.1007/BF01289421

    Article  CAS  PubMed  Google Scholar 

  37. Sagisaka, S., The occurrence of peroxide in a perennial plant, Populus gelrica, Plant Physiol., 1976, vol. 57, no. 2, pp. 308–309. https://doi.org/10.1104/pp.57.2.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O., and Oboznyi A.I., Effects of NO-status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings, Russ. J. Plant Physiol., 2015, vol. 62, no. 3, pp. 292–298. https://doi.org/10.1134/S1021443715030097

    Article  CAS  Google Scholar 

  39. Melekhov, E.I. and Efremova, L.K., Effect of phytohor-mones on plant cell stability to heating and to 2,4-D treatments, Fiziol. Rast., 1990, vol. 37, no. 3, pp. 561–568.

    CAS  Google Scholar 

  40. Bolwell, G.P. and Wojtaszek, P., Mechanisms for the generation of reactive oxygen species in plant defense—a broad perspective, Physiol. Mol. Plant Pathol., 1997, vol. 51, no. 6, pp. 347–366. https://doi.org/10.1006/pmpp.1997.0129

    Article  CAS  Google Scholar 

  41. Kolupaev, Yu.E., Akinina, G.E., and Mokrousov, A.V., Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress, Russ. J. Plant Physiol., 2005, vol. 52, no. 2, pp. 199–204. https://doi.org/10.1007/s11183-005-0030-9

    Article  CAS  Google Scholar 

  42. Chasov, A.V., Alekseeva, V.Y., Kolesnikov, O.P., and Minibayeva, F.V., Activation of extracellular peroxidase of wheat roots under the action of xenobiotics, Appl. Biochem. Microbiol., 2010, vol. 46, no. 4, pp. 431–437. https://doi.org/10.1134/S0003683810040125

    Article  CAS  Google Scholar 

  43. Maksimov, I.V., Troshina, N.B., Surina O.B., Cherepanova E.A., and Yarullina L.G., Influence of Ca2+ ions on metabolism of active oxygen species in wheat calli cocultured with the bunt pathogen Tilletia caries, Appl. Biochem. Microbiol., 2010, Vol. 46, no. 5, pp. 530–535. https://doi.org/10.1134/S000368381005011X

    Article  CAS  Google Scholar 

  44. Bakardjieva, N.T., Izvorska, N.D., and Hristova, N., Influence of Ca2+ on the activity and release of peroxidase from Tobacco callus tissues, Dokl. Bulg. Akad. Nauk, 1987, vol. 40, no. 8, pp. 84–88.

    Google Scholar 

  45. Kolupaev, Yu.E., Karpets, Yu.V., and Kabashnikova, L.F., Antioxidative system of plants: Cellular compartmentalization, protective and signaling functions, mechanisms of regulation (review), Appl. Biochem. Microbiol., 2019, vol. 55, no. 5, pp. 441–459. https://doi.org/10.1134/S0003683819050089

    Article  CAS  Google Scholar 

  46. Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F., and Tan, M., Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants, New Phytol., 2007, vol. 173, no. 1, pp. 27–38. https://doi.org/10.1111/j.1469-8137.2006.01888.x

    Article  CAS  PubMed  Google Scholar 

  47. Niu, L. and Liao, W., Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium, Front. Plant Sci., 2016, vol. 7, p. 230. https://doi.org/10.3389/fpls.2016.00230

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, Y., Xu, S., Ling, T., Xu, L., and Shen, W., Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway, J. Plant Physiol., 2010, vol. 167, no. 16, pp. 1371–1379. https://doi.org/10.1016/j.jplph.2010.05.021

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Kolupaev or A. P. Dmitriev.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving human participants and animals as objects.

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkliarevskyi, M.A., Karpets, Y.V., Kolupaev, Y.E. et al. Calcium-Dependent Changes in Cellular Redox Homeostasis and Heat Resistance of Wheat Plantlets under Influence of Hemin (Carbon Monoxide Donor). Cytol. Genet. 54, 522–530 (2020). https://doi.org/10.3103/S0095452720060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720060109

Keywords:

Navigation