Skip to main content
Log in

Sources of Chromosomal Polymorphism of Microsporocytes in Species of Lilium L. and Allium L.: Cytomixis, Extra Chromosomes, and Chromatin Diminution

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Cytomixis and chromosomal polymorphism of microsporocytes in microsporogenesis of the species Lilium croceum Chaix, Allium fistulosum L., and A. cepa L. were studied. It was found that the main cytomictic events are associated with the early prophase of meiosis and are obligatory (constitutive) for the examined species. In metaphase microsporocytes, the so-called extra chromosomes, presumably of cytomictic origin, were identified. They are characterized by weakening of synapsis and/or disintegration of homologues and associations with bivalents of the basic karyotype with the formation of secondary associations of chromosomes. Extra chromosomes are present not only in hyperchromosomal but also in eu- and hypochromosomal microsporocytes. The majority of extra chromosomes seem to be a “genetic ballast” for the cell, which it gets rid of using a wide range of cellular tools, in particular, chromosomal rearrangements, chromatin diminution, asymmetry of division, cytomixis, and programmed cell death. Nevertheless, some extra chromosomes can participate in the rearrangement of the karyotype of microsporocytes and microspores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bala, S. and Gupta, R.C., Effect of secondary associations on meiosis, pollen fertility and pollen size in cape gooseberry (Physalis peruviana L.), Chromosome Bot., 2011, vol. 6, pp. 25–28. https://doi.org/10.3199/iscb.6.25

    Article  Google Scholar 

  2. Bellucci, M., Roscini, C., and Mariani, A., Cytomixis in the pollen mother cells of Medicago sativa L., J. Hered., 2003, vol. 94, pp. 512–516. https://doi.org/10.1093/jhered/esg096

    Article  CAS  PubMed  Google Scholar 

  3. Bhattacharya, A. and Datta, A.K., Secondary chromosome associations in Uraria picta (Jacq.) DC (Family: Leguminosae), Cytologia, 2010, vol. 75, pp. 37–40. https://doi.org/10.1508/cyto-logia.75.37

    Article  Google Scholar 

  4. Bretagnolle, F. and Thompson, J.D., Gametes with the somatic (sic) chromosome number: mechanisms of their formation and role in the evolution of autopolypoid plants, N. Phytol., 1995, vol. 129, no. 1, pp. 1–22. https://doi.org/10.1111/j.1469-8137.1995.tb03005.x

    Article  Google Scholar 

  5. Cai, X. and Xu, S.S., Meiosis-driven genome variation in plants, Curr. Genomics, 2007, vol. 8, pp. 151–161. doi 10. 2174/138920207780833847

  6. Cheng, K.C., Nie, X.W., Wang, Y.X., and Yang, Q.L., The relation between cytomixis and variation of chromosome numbers in pollen mother cells of rye (Secale cereale L.), Acta Bot. Sin., 1980, vol. 22, pp. 216–220.

    Google Scholar 

  7. Das, A., Datta, A.K., and Ghose, S., Cytogenetical studies on two varieties of Withania somnifera, J. Trop. Med. Plants, 2009, vol. 10, pp. 249–256.

    Google Scholar 

  8. De Storme, N. and Mason, A., Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance, Curr. Plant Biol., 2014, vol. 1, pp. 10–33. https://doi.org/10.1016/j.cpb.2014.09.002

  9. Falistocco, E., Tosti, N., and Falcinelli, M., Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes, J. Heredity, 1995, vol. 86, pp. 448–453. https://doi.org/10.1093/oxfordjournals. jhered.a111619

  10. Fuentes, I., Stegemann, S., Golczyk, H., et al., Horizontal genome transfer as an asexual path to the formation of new species, Nature, 2014, vol. 511, pp. 232–235. https://doi.org/10.1038/nature13291

    Article  CAS  PubMed  Google Scholar 

  11. Gayen, P. and Sarkar, K.R., Cytomixis in maize haploids, Indian J. Genet. Plant Breed., 1996, vol. 56, no. 1, pp. 79–85.

    Google Scholar 

  12. Ghaffari, S.M., Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis, Afr. J. Biotech., 2006, vol. 5, pp. 1450–1453. https://doi.org/10.5897/AJB06.338

    Article  Google Scholar 

  13. Grishanin, A.K., Shekhovtsov, S.V., Boykova, T.V., Akifyev, A.P., and Zhimulev, I.F., The problem of chromatin diminution at the border of the XX and XXI centuries, Cytology, 2006, vol. 48, no. 5, pp. 379–397. pmid: 16892848

  14. Guan, J.Z., Wang, J.J., Cheng, Z.H., Liu, Y., and Li, Z.Y., Cytomixis and meiotic abnormalities during micro-sporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata, Genet. Mol. Res., 2012, vol. 11, pp. 121–130. https://doi.org/10.4238/2012.January.17.2

    Article  PubMed  Google Scholar 

  15. Hizume, M., Sato, S., and Tanaka, A., A highly reproducible method of nucleolus organizer regions staining in plants, Stain Technol., 1980, vol. 55, pp. 87–90. pmid: 6157230

  16. Jelesko, J.G., Harper, R., Furuya, M., and Gruissem, W., Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 18, pp. 10302–10307. https://doi.org/10.1073/pnas.96.18.10302

    Article  Google Scholar 

  17. Kravets, E.A., Cellular and tissue mechanisms of recovery processes in Hordeum distichum L. under irradiation, Cytol. Genet., 2009, vol. 43, no. 1, pp. 9–17. https://doi.org/10.3103/S0095452709010022

    Article  Google Scholar 

  18. Kravets, E.A., Nature, significance, and cytological consequences of cytomixis, Cytol. Genet., 2012, vol. 46, no. 3, pp. 188–195. https://doi.org/10.3103/S0095452712030061

    Article  Google Scholar 

  19. Kravets, E.A., Cytomixis and its role in the regulation of plant fertility, Russ. J. Dev. Biol., 2013, vol. 44, no. 3, pp. 113–128. https://doi.org/10.1134/s1062360413030028

    Article  CAS  Google Scholar 

  20. Kravets, E.A., Cytomixis as a primary form of sexual process, Adv. Cytol. Pathol., 2018, vol. 3, no. 5, pp. 88–91. https://doi.org/10.15406/acp.2018.03.00059

    Article  Google Scholar 

  21. Kravets, E.A., Mykheyev, A.N., Ovsyannikova, L.G., and Grodzynsky, D.M., Critical level of radiation damage of root apical meristem and mechanisms for its recovery in Pisum sativum L., Cytol. Genet., 2011, vol. 45, no. 1, pp. 18–26. https://doi.org/10.3103/S0095452711010051

    Article  Google Scholar 

  22. Kravets, E.A., Berezhnaya, V.V., Sakada, V.I., Rashydov, N.M., and Grodzinsky, D.M., Structural architectonics of the root apical meristem in connection with quantitative evaluation of its radiation damage, Cytol. Genet., 2012, vol. 46, no. 2, pp. 63–73. https://doi.org/10.3103/S0095452712020016

    Article  Google Scholar 

  23. Kravets, E.A., Sidorchuk, Yu.V., Horyunova, I.I., Plohovskaya, S.H., Mursalimov, S.R., Deineko, E.V., Yemets, A.I., and Blume, Ya.B., Intra- and intertissular cytomictic interactions in the microsporogenesis of mono- and dicotyledonous plants, Cytol. Genet., 2016, vol. 50, no. 5, pp. 267–277. https://doi.org/10.3103/s0095452716050054

    Article  Google Scholar 

  24. Kravets, E.A., Yemets, A.I., and Blume, Ya.B., Cellular mechanisms of nuclear migration, Cytol. Genet., 2017, vol. 51, no. 3, pp. 192–201. https://doi.org/10.3103/S0095452717030069

    Article  Google Scholar 

  25. Kravets, E.A., Yemets, A.I., and Blume, Ya.B., Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 999–1009. https://doi.org/10.1002/cbin.10842

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, P. and Singhal, V.K., Male meiosis, morphometric analysis and distribution pattern of 2x and 4x cytotypes of Ranunculus hirtellus Royle (Ranunculaceae) from the cold regions of Northwest Himalayas (India), Comp. Cytogenet., 2011, vol. 5, pp. 143–161. https://doi.org/10.3897/CompCytogen.v5i3.1359

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kumar, G. and Chaudhary, N., Secondary chromosomal association in kidney bean (Phaseolus vulgaris L.), Jordan J. Biol. Sci., 2014, vol. 7, no. 1, pp. 71–74. https://doi.org/10.12816/0008217

    Article  Google Scholar 

  28. Kumar, G. and Singh, S., Enigmatic phenomenon of secondary association among bivalents in Guar (Cyamopsis tetragonoloba (L.) Taub.), Cytol. Genet., 2018, vol. 52, no. 6, pp. 478–483. https://doi.org/10.3103/S0095452718060075

    Article  Google Scholar 

  29. Kumar, G. and Singh, S., Induced cytomictic crosstalk behaviour among micro-meiocytes of Cyamopsis tetragonoloba (L.) Taub. (cluster bean): reasons and repercussions, Caryologia, 2020, vol. 73, no. 2, pp. 111–119.https://doi.org/10.13128/caryologia-544

  30. Lattoo, S.K., Khan, S., Bamotra, S., and Dhar, A.K., Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq.—an additional strategy and possible implications, J. Biosci., 2006, vol. 31, pp. 629–637. https://doi.org/10.1007/BF02708415

    Article  CAS  PubMed  Google Scholar 

  31. Malallah, G.A. and Attia, T.A., Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae), Bot. J. Linn. Soc., 2003, vol. 143, pp. 169–175. https://doi.org/10.1046/j.1095-8339.2003.00218.x

    Article  Google Scholar 

  32. Malgwi, M.M., Oyewole, S.O., and Khan, A.U., Chromosomes and secondary associations in tetraploid Cleome polyanthera L., Nucleus, 1997, vol. 40, pp. 20–25.

    Google Scholar 

  33. Mandal, A. and Datta, A.K., Secondary chromosome associations and cytomixis in Corchorus spp., Cytologia, 2011, vol. 76, no. 3, pp. 337–343. https://doi.org/10.1508/cytologia.76.337

    Article  Google Scholar 

  34. Mandal, A., Datta, A.K., Gupta, S., et al., Cytomixis—a unique phenomenon in animal and plant, Protoplasma, 2013, vol. 250, no. 5, pp. 985–996. https://doi.org/10.1007/s00709-013-0493-z

    Article  CAS  PubMed  Google Scholar 

  35. Mursalimov, S. and Deineko, E., Cytomixis in plants: facts and doubts, Protoplasma, 2017, vol. 255, no. 3, pp. 719–731. https://doi.org/10.1007/s00709-017-1188-7

    Article  PubMed  Google Scholar 

  36. Mursalimov, S., Sidorchuk, Yu., and Deineko, E., New insights into cytomixis: specific cellular features and prevalence in higher plants, Planta, 2013, vol. 238, no. 3, pp. 415–423. https://doi.org/10.1007/s00425-013-1914-0

    Article  CAS  PubMed  Google Scholar 

  37. Mursalimov, S.R., Sidorchuk, Y.V., and Deineko, E.V., Analysis of cytoskeleton in the cells involved in cytomixis: the migrated chromatin displays an MT-organizing activity and can interact with the spindle, Biologia, 2019, vol. 74, no. 5, pp. 555–562. https://doi.org/10.2478/s11756-019-00203-4

    Article  Google Scholar 

  38. Pierre, M.O. and de Sousa, S.M., Citomixia em plantas: causas, mecanismos e consequencias, R. Bras. Biosci., 2011, vol. 9, pp. 231–240.

    Google Scholar 

  39. Reis, A.C., Sousa, S.M., and Viccini, L.F., High frequency of cytomixis observed at zygotene in tetraploid Lippia alba, Plant Syst. Evol., 2015, vol. 302, no. 1, pp. 121–127. https://doi.org/10.1007/s00606-015-1249-3

    Article  Google Scholar 

  40. Sapre, A.B. and Deshpande, D.S., A change in chromosome number due to cytomixis in an interspecific hybrid of Coix L., Cytologia, 1987, vol. 52, pp. 167–174. https://doi.org/10.1508/cytologia.52.167

    Article  Google Scholar 

  41. Sidorchuk, Yu.V., Kravets, E.A., Mursalimov, S.R., Plokhovskaya, S.G., Goryunova, I.I., Emets, A.I., Blume, Y.B., and Deineko, E.V., Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress, Russ. J. Dev. Biol., 2016, vol. 47, no. 6, pp. 335–347. https://doi.org/10.1134/s1062360413030028

    Article  CAS  Google Scholar 

  42. Singhal, V.K. and Kumar, P., Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle), J. Biosci., 2008, vol. 33, pp. 371–380. https://doi.org/10.1007/s12038-008-0057-0

    Article  CAS  PubMed  Google Scholar 

  43. Singhal, V.K., Rana, P.K., Kumar, P., and Kaur, D., Persistent occurrence of meiotic abnormalities in a new hexaploid cytotype of Thalictrum foetidum from Indian cold deserts, Biologia, 2011, vol. 66, pp. 58–464. https://doi.org/10.2478/s11756-011-0033-2

    Article  Google Scholar 

  44. Streit, A., Silencing by throwing away: a role for chromatin diminution, Dev. Cell, 2012, vol. 23, no. 5, pp. 918–919. https://doi.org/10.1016/j.devcel.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  45. Wu, W., Zheng, Y.L., Yang, R.W., Chen, L., et al., Variation of the chromosome number and cytomixis of Houttuynia cordata from China, J. Syst. Evol., 2003, vol. 41, pp. 245–257.

    Google Scholar 

  46. Zheng, G.C., Yang, Q.R., and Zheng, Y.R., The relationship between cytomixis and chromosome mutation and karyotype evolution in lily, Caryologia, 1987, vol. 40, pp. 243–259. https://doi.org/10.1080/00087114.1987.10797827

    Article  Google Scholar 

  47. Zickler, D. and Kleckner, N., Recombination, pairing, and synapsis of homologs during meiosis, Cold Spring Harb. Perspect. Biol., 2015. https://doi.org/10.1101/cshperspect.a016626

Download references

Funding

This work was not funded from any sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kravets.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies using humans and animals as objects of study.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravets, E.A., Plohovskaya, S.H., Horyunova, I.I. et al. Sources of Chromosomal Polymorphism of Microsporocytes in Species of Lilium L. and Allium L.: Cytomixis, Extra Chromosomes, and Chromatin Diminution. Cytol. Genet. 55, 107–116 (2021). https://doi.org/10.3103/S0095452721020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721020080

Keywords:

Navigation