Skip to main content
Log in

Morphological and Molecular Cytogenetic Characteristics of Giant Human Oocytes

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The expedience of using oocytes with morphological dysmorphism in assisted reproduction technology programs is debatable. This study aimed to estimate morphological and molecular cytogenetic characteristics of enlarged oocytes and to predict results of their further fertilization. Among 774 oocytes retrieved from 80 patients, 83 (11%) cells were enlarged. Morphometric analysis showed the diameter of the ooplasm to be (176.67 ± 1.76) μm and the diameter with ZP (200.8 ± 4.24) μm. Among these giant oocytes, 47 (56.6%) were at the metaphase II stage, 26 (31.3%) at the metaphase I stage, and 10 (12.1%) at the prophase I stage. The retrieved giant oocytes were characterized by dysmorphism of endo- and exocytoplasmic structures. Among 47 cells at the metaphase II stage, 40 (85.1%) oocytes had two polar bodies, three (6.4%) oocytes had one polar body, and four (8.5%) oocytes had a fragmented polar body. The assessment of the presence of meiotic spindle by polarization microscopy showed that 39 (83%) oocytes had two meiotic spindles, 3 (6.4%) oocytes had one meiotic spindle, and 5 oocytes (10.6%) had no visualized meiotic spindles despite the presence of polar bodies. After fertilization of 47 oocytes at the metaphase II stage, pronuclei were detected in 42 (89.4%) cells, including 9 (21.4%) oocytes with two pronuclei, 27 (63.3%) oocytes with 3 pronuclei, and 6 (15.3%) oocytes with four pronuclei. The molecular cytogenetic analysis demonstrated that the embryos obtained after fertilization of giant oocytes had a polyploid chromosome set number. Thus, the results of our study showed the inexpediency of using giant oocytes for further fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Almeida, P.A. and Bolton, V.N., Immaturity and chromosomal abnormalities in oocytes that fail to develop pronuclei following insemination in vitro, Hum. Reprod., 1993, vol. 8, no. 2, pp. 229–232. doihttps://doi.org/10.1093/oxfordjournals.humrep.a138028

    Article  CAS  PubMed  Google Scholar 

  2. Balaban, B. and Urman, B., Effect of oocyte morphology on embryo development and implantation, Reprod. Biomed. Online, 2006, vol. 12, no. 5, pp. 608–615. https://doi.org/10.1016/s1472-6483(10)61187-x

    Article  PubMed  Google Scholar 

  3. Balakier, H., Bouman, D., Sojecki, A., et al., Morphological and cytogenetic analysis of human giant oocytes and giant embryos, Hum. Reprod., 2002, vol. 17, no. 9, pp. 2394–2401. https://doi.org/10.1093/humrep/17.9.2394

    Article  PubMed  Google Scholar 

  4. Bilinski, S.M., Kloc, M., and Tworzydlo, W., Selection of mitochondria in female germline cells: is Balbiani body implicated in this process?, J. Assist. Reprod. Genet., 2017, vol. 34, no. 11, pp. 1405–1412. https://doi.org/10.1007/s10815-017-1006-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bosch, E., Labarta, E., Kolibianakis, E., et al., Super-ovulation induced changes of lipid metabolism in ovaries and embryos and its probable mechanism, PLoS One, 2015, vol. 10, no. 7. e0132638. https://doi.org/10.1371/journal.pone.0132638

    Article  CAS  Google Scholar 

  6. Brunet, S. and Verlhac, M.H., Positioning to get out of meiosis: the asymmetry of division, Hum. Reprod. Update, 2011, vol. 17, no. 1, pp. 68–75. https://doi.org/10.1093/humupd/dmq044

    Article  PubMed  Google Scholar 

  7. Buderatska, N.O. and Petrushko, M.P., Variability of morphological parameters as a prognostic criterion of human oocyte cryopreservation, Morphologia, 2017, vol. 10, no. 4, pp. 18– 22. https://doi.org/10.26641/1997-9665.2016.4.18-22

    Article  Google Scholar 

  8. Buderatska, N., Gontar, J., Ilyin, I., et al., Does human oocyte cryopreservation affect equally on embryo chromosome aneuploidy?, Cryobiology, 2020, vol. 93, pp. 33–36. https://doi.org/10.1016/j.cryobiol.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  9. Burkhardt, S., Borsos, M., Szydlowska, A., et al., Chromosome cohesion established by rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice, Curr. Biol., 2016, vol. 26, no. 5, pp. 678–685. https://doi.org/10.1016/j.cub.2015.12.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conti, M. and Franciosi, F., Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events, Hum. Reprod. Update, 2018, vol. 24, no. 3, pp. 245–266. https://doi.org/10.1093/humupd/dmx040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delhanty, J.D., SenGupta, S.B., and Ghevaria, H., How common is germinal mosaicism that leads to pre-meiotic aneuploidy in the female?, J. Assist. Reprod. Genet., 2019, vol. 36, no. 12, pp. 2403–2418. https://doi.org/10.1007/s10815-019-01596-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Egozcue, S., Blanco, J., Vidal, F., et al., Diploid sperm and the origin of triploidy, Hum. Reprod., 2002, vol. 17, no. 1, pp. 5–7. https://doi.org/10.1093/humrep/17.1.5

    Article  CAS  PubMed  Google Scholar 

  13. Elkouby, Y.M., Jamieson-Lucy, A., and Mullins, M.C., Oocyte polarization is coupled to the chromosomal bouquet, a conserved polarized nuclear configuration in meiosis, PLoS Biol., 2016, vol. 14, no. 1. e1002335. https://doi.org/10.1371/journal.pbio.1002335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Escobar-Aguirre, M., Zhang, H., Jamieson-Lucy, A., et al., Microtubule–actin crosslinking factor 1 (Macf1) domain function in Balbiani body dissociation and nuclear positioning, PLoS Genet., 2017, vol. 13, no. 9. e1006983. https://doi.org/10.1371/journal.pgen.1006983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Cruz, R., Brieco, M.A., Roig, I., et al., Dynamics of cohesin proteins REC8, STAG3, SMC1 beta and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes, Hum. Reprod., 2010, vol. 25, no. 9, pp. 2316–2327. https://doi.org/10.1093/humrep/deq180

    Article  CAS  PubMed  Google Scholar 

  16. Heim, A.E., Hartung, O., Rothhamel, S., et al., Oocyte polarity requires a Bucky ball-dependent feedback amplification loop, Development, 2014, vol. 141, no. 4, pp. 842–854. https://doi.org/10.1242/dev.090449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lehner, A., Kaszas, Z., Murber, A., et al., Giant oocytes in human in vitro fertilization treatments, Arch. Gynecol. Obstet., 2015, vol. 292, no. 3, pp. 697–703. https://doi.org/10.1007/s00404-015-3679-0

    Article  PubMed  Google Scholar 

  18. Machtinger, R., Politch, J.A., Hornstein, M.D., et al., A giant oocyte in a cohort of retrieved oocytes: does it have any effect on the in vitro fertilization cycle outcome?, Fertil. Steril., 2011, vol. 95, no. 2, pp. 573–576. https://doi.org/10.1016/j.fertnstert.2010.06.037

    Article  PubMed  Google Scholar 

  19. Mahadevan, M.M., Fleetham, J., Long-Simpson, L., et al., Recovery of a preovulatory binucleate oocyte in a patient following induction of ovulation for in vitro fertilization, J. In Vitro Fert. Embryo Transf., 1988, vol. 5, no. 5, pp. 299–300. https://doi.org/10.1007/BF01132182

    Article  CAS  PubMed  Google Scholar 

  20. Martin, R.H., Meiotic errors in human oogenesis and spermatogenesis, Reprod. Biomed. Online, 2008, vol. 16, no. 4, pp. 523–531. https://doi.org/10.1016/s1472-6483(10)60459-2

    Article  PubMed  Google Scholar 

  21. McFadden, D.E., Jiang, R., and Langlois, S., Dispermy—origin of diandric triploidy: brief communication, Hum. Reprod., 2002, vol. 17, no. 12, pp. 3037–3038. https://doi.org/10.1093/hum-rep/17.12.3037

    Article  CAS  PubMed  Google Scholar 

  22. Munné, S., Alikani, M., and Cohen, J., Monospermic polyploidy and atypical embryo morphology, Hum. Reprod., 1994, vol. 9, no. 3, pp. 506–510. https://doi.org/10.1093/oxfordjournals.humrep.a138536

    Article  PubMed  Google Scholar 

  23. Pampalona, J., Frías, C., Genesca, A., et al., Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells, PLoS Genet., 2012, vol. 8, no. 4. e1002679. https://doi.org/10.1371/journal.pgen.1002679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pellestor, F., Andréo, B., Arnal, F., et al., Mechanisms of non-disjunction in human female meiosis: the coexistence of two modes of malsegregation evidenced by the karyotyping of 1397 in-vitro unfertilized oocytes, Hum. Reprod., 2002, vol. 17, no. 8, pp. 2134–2145. https://doi.org/10.1093/humrep/17.8.2134

    Article  PubMed  Google Scholar 

  25. Petrushko, M.P., Yurchuk, T.O., and Buderatska, N.O., Oolemma invagination of fresh and cryopreserved human oocytes during in vitro fertilization by ICSI, Probl. Cryobiol. Cryomed., 2018, vol. 28, no. 3, pp. 258–265. https://doi.org/10.15407/cryo28.03.258

    Article  Google Scholar 

  26. Reader, K.L., Stanton, J.L., and Juengel, J.L., The role of oocyte organelles in determining developmental competence, Biology (Basel), 2017, vol. 6, no. 3, p. 35. https://doi.org/10.3390/biology6030035

    Article  CAS  PubMed Central  Google Scholar 

  27. Rienzi, L., Balaban, B., Ebner, T., et al., The oocyte, Hum. Reprod., 2012, vol. 27, suppl. 1, pp. i2–i21. https://doi.org/10.1093/hum-rep/des200

    Article  PubMed  Google Scholar 

  28. Roeles, J. and Tsiavaliaris, G., Actin-microtubule interplay coordinates spindle assembly in human oocytes, Nat. Commun., 2019, vol. 10, no. 1, p. 4651. https://doi.org/10.1038/s41467-019-12674-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenbusch, B., Mechanisms giving rise to triploid zygotes during assisted reproduction, Fertil. Steril., 2008, vol. 90, no. 1, pp. 49–55. https://doi.org/10.1016/j.fertnstert.2007.06.031x

    Article  PubMed  Google Scholar 

  30. Rosenbusch, B., The potential significance of binovular follicles and binucleate giant oocytes for the development of genetic abnormalities, J. Genet., 2012, vol. 91, no. 3, pp. 397–404. https://doi.org/10.1007/s12041-012-0195-x

    Article  PubMed  Google Scholar 

  31. Soewarto, D., Schmiady, H., and Eichenlaub-Ritter, U., Consequences of non-extrusion of the first polar body and control of the sequential segregation of homologues and chromatids in mammalian oocytes, Hum. Reprod., 1995, vol. 10, no. 9, pp. 2350–2360. https://doi.org/10.1093/oxford-journals.humrep.a136298

    Article  CAS  PubMed  Google Scholar 

  32. Storchova, Z. and Kuffer, C., The consequences of tetraploidy and aneuploidy, J. Cell Sci., 2008, vol. 121, pt. 23, pp. 3859–3866. https://doi.org/10.1242/jcs.039537

    Article  CAS  PubMed  Google Scholar 

  33. Tsutsumi, M., Fujiwara, R., Nishizawa, H., et al., Age-related decrease of meiotic cohesins in human oocytes, PLoS One, 2014, vol. 9, no. 5. e96710. https://doi.org/10.1371/journal.pone.0096710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ullah, Z., Lee, C.Y., and Lilly, M.A., Developmentally programmed endoreduplication in animals, Cell Cycle, 2009, vol. 8, no. 10, pp. 1501–1509. https://doi.org/10.4161/cc.8.10.8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verlhac, M.H. and Terret, M.E., Oocyte maturation and development, F1000Res, 2016, vol. 5. https://doi.org/10.12688/f1000re-search.7892.1

  36. Wang, L.Y., Wang, N., Le, F., et al., Superovulation induced changes of lipid metabolism in ovaries and embryos and its probable mechanism, PLoS One, 2015, vol. 10, no. 7. e0132638. https://doi.org/10.1371/journal.pone.0132638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yi, K. and Li, R., Actin cytoskeleton in cell polarity and asymmetric division during mouse oocyte maturation, Cytoskeleton (Hoboken), 2012, vol. 69, no. 10, pp. 727–737. https://doi.org/10.1002/cm.21048

    Article  CAS  PubMed  Google Scholar 

  38. Yurchuk, T.O., Buderatska, N.O., Ilyin, I.E., et al., Morphological characteristics of the first polar body of oocytes and results of embryos PGT-A, Morphologia, 2019, vol. 13, no. 4, pp. 50–54. https://doi.org/10.26641/1997-9665.2019.4.50-54

    Article  Google Scholar 

Download references

Funding

This work was carried out by the authors without funding from state or nonstate funds or financial institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. P. Petrushko, N. O. Buderatska, J. V. Gontar or T. O. Yurchuk.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement of compliance with standards of research involving humans as subjects. All studies were carried out in accordance with the rules of biomedical ethics. To work with oocytes and embryos, written, voluntary, and informed consent of patients was obtained. All manipulations with oocytes and preimplantation embryos were carried out in accordance with the order of the Ministry of Health of Ukraine from September 9, 2013, no. 787 “On Approval of the Procedure for the Use of Assisted Reproductive Technologies in Ukraine” and the European Protocol on Embryo Protection. The research was carried out in accordance with the principles of the Helsinki Declaration of Human Rights, the European Convention of Human Rights and Biomedicine, and the recommendations of ESHRE and ARSM. The studies were approved by the Bioethics Committee of the Institute of Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine (minutes no. 7, 2015, and no. 1, 2019).

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrushko, M.P., Buderatska, N.O., Gontar, J.V. et al. Morphological and Molecular Cytogenetic Characteristics of Giant Human Oocytes. Cytol. Genet. 55, 132–137 (2021). https://doi.org/10.3103/S0095452721020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721020110

Keywords:

Navigation