Skip to main content
Log in

Phylogenetic Analysis of the Bacillus subtilis IFBG MK-2 Strain and Riboflavin Production by Its Induced Clones

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The aim of this work was to study phylogenetic relationships between the new producer strain Bacillus subtilis IFBG MK-2 and the existing strains and increase the biosynthetic activity of this producer by mutagenesis. As a result of sequencing the 16S rRNA gene of the IFBG MK-2 strain, gene fragments with a total length of 1305 nucleotides have been obtained. Based on the 16S rRNA gene nucleotide sequences, a phylogenetic analysis was performed and a dendrogram was constructed using the Neighbor Joining method and the Kimura two-parameter model. It has been shown that the similarity between the sum of the 16S rRNA gene sequenced fragments of the IFBG MK-2 strain and the GenBank-deposited sequence of this gene of the B. subtilis IAM 12118 type strain reaches 99%. Based on the phylogenetic analysis, the IFBG MK-2 strain was identified as B. subtilis. Through induced mutagenesis, using UV radiation and subsequent stepwise selection, a mutant clone B. subtilis IFBG MK-1A providing for a 50% increase in riboflavin production compared with the original strain has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011. https://doi.org/10.1128/MMBR.00030-10

  2. Amin, F.A.Z., Sabri, S., Ismail, M., et al., Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia, Int. J. Environ. Res. Public Health, 2020. https://doi.org/10.3390/ijerph17010278

  3. Andriiash, G.S., Zabolotna, G.M., Bondarenko, V.S., et al., Gene 16s rRNA sequence phylogenetic analysis of lysine producers strains, Biotechnol. Acta, 2014. https://doi.org/10.15407/biotech7.06.040

  4. Asia, L., Mohsin, I., and Muhammad, A., Ethyl methane sulfonate chemical mutagenesis of Bacillus subtilis for enhanced production of protease, Org. Med. Chem. Int. J., 2018. https://doi.org/10.19080/OMCIJ.2018.05.555664

  5. Boretsky, Yu.R., Petryshyn, A., Krieger, K., et al., Cloning and expression of a gene encoding riboflavin synthase of yeast Pichia guilliermondii, Tsitol. Genet., 2002, vol. 36, no. 4, pp. 3–7.

    Google Scholar 

  6. Cortesгo, M. et al., Bacillus subtilis spore resistance to simulated Mars surface conditions, Front. Microbiol., 2019. https://doi.org/10.3389/fmicb.2019.00333

  7. Debabov, V.G., The industrial use of Bacilli, in The Molecular Biology of the Bacilli, USA, New York, 1981, pp. 331–371.

  8. Franco-Duarte, R. et al., Advances in chemical and biological methods to identify microorganisms—from past to present, Microorganisms, 2019. https://doi.org/10.3390/microorganisms7050130

  9. Ge, Y.-Y. et al., Screening and spontaneous mutation of pickle-derived Lactobacillus plantarum with overproduction of riboflavin, related mechanism, and food application, Foods, 2020. https://doi.org/10.3390/foods9010088

  10. Gershanovich, V.N. et al., Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis, Mol. Gen. Mikrobiol. Virusol., 2000, vol. 3, pp. 3–7.

    Google Scholar 

  11. Gingichashvili, S., Duanis-Assaf, D., Shemesh, M., et al., The adaptive morphology of Bacillus subtilis biofilms: a defense mechanism against bacterial starvation, Microorganisms, 2020. https://doi.org/10.3390/microorganisms8010062

  12. Karpov, D.S., Domashin, A.I., Kotlov, M.I., et al., Biotechnological potential of the Bacillus subtilis 20 strain, Mol. Biol., 2020. https://doi.org/10.1134/S0026893320010082

  13. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 115–175.

    Google Scholar 

  14. Liu, S., Hu, W., and Wang, Z., Production of riboflavin and related cofactors by biotechnological processes, Microb. Cell Fact., 2020. https://doi.org/10.1186/s12934-020-01302-7

  15. Mohsin, I., Muhammad, A., and Fareeha, B., Development of Bacillus subtilis mutants for overproduction of protease, J. Microb. Biochem. Technol., 2017. https://doi.org/10.4172/1948-5948.1000363

  16. Radchenko, M.M. et al., Isolation and identification of a strain producing riboflavin, Fakt. Eksp. Evol. Organiz., 2019. https://doi.org/10.7124/FEEO.v24.1094

  17. Saleh, A.A., Dawood, M.M., Badawi, N.A., et al., Effect of supplemental serine-protease from Bacillus licheniformis on growth performance and physiological change of broiler chickens, J. Appl. Anim. Res., 2020. https://doi.org/1080/09712119.2020.1732986

  18. Schallmey, M., Singh, A., and Ward, O.P., Developments in the use of Bacillus species for industrial production, Can. J. Microbiol., 2004. https://doi.org/10.1139/W03-076

  19. Suwannasom, N., Kao, I., Pruẞ, A., et al., Riboflavin: the health benefits of a forgotten natural vitamin, Int. J. Mol. Sci., 2020. https://doi.org/10.3390/ijms21030950

  20. Tamura, K., Stecher, G., and Peterson, D., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013. https://doi.org/10.1093/molbev/mst197

  21. Wang, J., Wang, W., Wang, H., et al., Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains, Appl. Microbiol. Biotechnol., 2019. https://doi.org/10.1007/s00253-019-09788-x

  22. Xue, F., Sampedro-Torres-Quevedo, C., Arnaouteli, S., et al., Probiotic Bacillus subtilis protects against a-synuclein aggregation in C. elegans, Cell Rep., 2020. https://doi.org/10.1016/j.celrep.2019.12.078

  23. Zaghari, M., Sarani, P., and Hajati, H., Comparison of two probiotic preparations on growth performance, intestinal microbiota, nutrient digestibility and cytokine gene expression in broiler chickens, J. Appl. Anim. Res., 2020. 1080/09712119.2020.1754218

  24. Zhang, C., Wu, D., and Ren, H., Economical production of vitamin K2 using crude glycerol from the by-product of biodiesel, Sci. Rep., 2020. https://doi.org/10.1038/s41598-020-62737-x

Download references

Funding

The study was supported by the Creation of Overproducer Strains for Secondary Metabolites (Amino Acids, Alcohols, and Vitamins) departmental program. State registration no. 0119U101489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shulga.

Ethics declarations

The authors declare that they have no conflict of interests.

This article contains no results of any investigations involving humans and animals as their objects.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, M.M., Tigunova, O.O., Zelena, L.B. et al. Phylogenetic Analysis of the Bacillus subtilis IFBG MK-2 Strain and Riboflavin Production by Its Induced Clones. Cytol. Genet. 55, 145–151 (2021). https://doi.org/10.3103/S0095452721020134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721020134

Keywords:

Navigation