Skip to main content
Log in

Analysis of CHD Gene Polymorphism as a Model Object for Molecular Sexing of Eurasian Eagle-Owl (Bubo bubo)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

CHD gene polymorphism as a model object for molecular sex determination in Bubo bubo (Eurasian eagle-owl) was studied. Classical PCR methods for amplification of target regions of the CHD gene using P2/P8, 2550F/2718R, and 123L/1272H marker systems and restriction (PCR-RFLP) and heteroduplex methodological approaches were analyzed. It was shown that the use of the P2/P8 marker system within classical PCR is efficient for avian sexing only under electrophoretic separation of the fragments in polyacrylamide gel. The application of 2550F/2718R and 123L/127H markers demonstrated their lack of efficiency both in agarose and polyacrylamide gels because it was not possible to differentiate between genotypes CHDZZ and CHDZW. The presence of a polymorphic restriction site for HaeIII in CHDZ and CHDW fragments amplified with primers P2/P8 was proven. No polymorphic site was detected for DdeI restriction endonuclease. High efficiency of the heteroduplex analysis based on the P2/P8 markers for sexing individuals under electrophoretic separation of the amplified fragments both in agarose and polyacrylamide gels was proven. In case of experimental samples containing CHDZ and CHDW amplicons, additional fragments of heteroduplex DNA were found, the presence of which makes it possible to accurately determine the genotype of an avian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Barros, T.B., Fraga, R.E., Ramos, C.N., and Tomazi, L., Improvement of the molecular sexing of parrots. in the State of Bahia, Acta Biol. Paran., 2017, vol. 46, nos. 3–4, pp. 89–107. https://doi.org/10.5380/abpr.v46i0.56731

    Article  Google Scholar 

  2. Bermudez-Humaran, L.G., Chavez-Zamarripa, P., Guzman-Velasco, A., Leal-Garza, C.H., and Montes de Oca-Luna, R., Loss of restriction site DdeI, used for avian molecular sexing, in Oreophasis derbianus, Reprod. Domest. Anim., 2002a, vol. 37, pp. 321–323. https://doi.org/10.1046/j.1439-0531.2002.00362.x

    Article  CAS  PubMed  Google Scholar 

  3. Bermudez-Humaran, L.G., Garcia-Garcia, A., Leal-Garza, C.H., Riojas-Valdes, V.M., Jaramillo-Rangel, G., and Montes-de-Oca-Luna, R., Molecular sexing of monomorphic endangered Ara birds, J. Exp. Zool., 2002b, vol. 292, no. 7, pp. 77–80. https://doi.org/10.1002/jez.10070

    Article  CAS  Google Scholar 

  4. Cakmak, E., Peksen, C.A., and Bilgin, C.C., Comparison of three different primer sets for sexing birds, J. Vet. Diagn. Invest., 2017, vol. 29, no. 1, pp. 59–63. https://doi.org/10.1177/1040638716675197

    Article  CAS  PubMed  Google Scholar 

  5. Casey, A.E., Jones, K.L., Sandercock, B.K., and Wisely, S.M., Heteroduplex molecules cause sexing errors in a standard molecular protocol for avian sexing, Mol. Ecol. Res., 2009, vol. 9, pp. 61–65. doi . 2008.02307.xhttps://doi.org/10.1111/j.1755-0998

  6. Corters, O., Barroso, A., and Dunner, S., Avian sexing: an optimized protocol using polymerase chain reaction–single-strand conformation polymorphism, J. Vet. Diagn. Invest., 1999, vol. 11, pp. 297–299. 10.1177/10406387990110031

    Article  Google Scholar 

  7. Delgado, M.D. and Penteriani, V., Gender determination of Eurasian Eagle-Owls (Bubo bubo) by morphology, J. Raptor Res., 2004, vol. 38, pp. 375–377.

    Google Scholar 

  8. Ellegren, H., First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds, Proc. Biol. Sci., 1996, vol. 263, no. 1377, pp. 1635–1641. https://doi.org/10.1098/rspb.1996.0239

    Article  CAS  PubMed  Google Scholar 

  9. Fridolfsson, A. and Ellegren, H., A simple and universal method for molecular sexing of non-ratite birds, J. Avian Biol., 1999, vol. 30, pp. 116–121. https://doi.org/10.2307/3677252

    Article  Google Scholar 

  10. Garcia, C.B., Insausti, J.A., Gil, J.A., Frutos, A., Alcantara, M., Gonzalez, J., Cortes, M.R., Bonafonte, J.I., and Arruga, M.V., Comparison of different procedures of DNA analysis for sex identification in the endangered bearded vulture (Gypaetus barbatus), Eur. J. Wild Res., 2009, vol. 55, pp. 309–312. https://doi.org/10.1007/s10344-008-0239-y

    Article  Google Scholar 

  11. Griffiths, R., Daan, S., and Dijkstra, C., Sex identification in birds using two CHD genes, Proc. R. Soc. London B, 1996, vol. 263, pp. 1251–1256. https://doi.org/10.1098/rspb.1996.0184

    Article  CAS  Google Scholar 

  12. Griffiths, R., Double, M., Orr, K., and Dawson, R., A DNA test to sex most birds, Mol. Ecol., 1998, vol. 7, pp. 1071–1075. https://doi.org/10.1046/j.1365-294x.1998.00389.x

    Article  CAS  PubMed  Google Scholar 

  13. Griffiths, R. and Tiwari, B., Sex of the last wild Spix’s macaw, Nature, 1995, vol. 375, p. 454. https://doi.org/10.1038/375454a0

    Article  CAS  PubMed  Google Scholar 

  14. Insee, J., Kamolnorranath, S., Baicharoen, S., Chumpadang, S., Sawasu, W., and Wajjwalku, W., PCR-based method for sex identification of eastern sarus crane (Grus antigone sharpii): implications for reintroduction programs in Thailand, Zool. Sci., 2014, vol. 31, pp. 95–100. https://doi.org/10.2108/zsj.31.9

    Article  Google Scholar 

  15. Kahn, N.W., John, J.S.T., and Quinn, T.W., Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds, Auk, 1998, vol. 115, no. 4, pp. 1074–1078. https://doi.org/10.2307/4089527

    Article  Google Scholar 

  16. Krüger, O., The evolution of reversed sexual size dimorphism in hawks, falcons and owls: a comparative study, Evol. Ecol., 2005, vol. 19, no. 5, pp. 467–486. https://doi.org/10.1007/s10682-005-0293-9

    Article  Google Scholar 

  17. Lee, M.Y., Hong, Y.J., Park, S.K., Kim, Y.J., Choi, T.Y., Lee, H., and Min, M.S., Application of two complementary molecular sexing methods for East Asian bird species, Genes Genom., 2008, vol. 30, no. 4, pp. 365–372.

    CAS  Google Scholar 

  18. Mario Leyn-Ortega, M., del Mar Delgado, M., Martinez, J.E., Penteriani, V., and Calvo, J.F., Factors affecting survival in Mediterranean populations of the Eurasian eagle owl, Eur. J. Wild Res., 2016, vol. 62, pp. 643–651. https://doi.org/10.1007/s10344-016-1036-7

    Article  Google Scholar 

  19. Mataragka, A., Balaskas, C., Sotirakoglou, K., and Ikonomopoulos, J., Comparative evaluation of the performance of the PCR assays commonly used for the determination of sex in avian species, J. King Saud. Univ.–Sci., 2020, vol. 32, pp. 228–234. https://doi.org/10.1016/j.jksus.2018.04.020

  20. Medeiros, R.T., Chaves, F.G., Vecchi, M.B., Nogueira, D.M., and Alves, M.A.S., Molecular sexing and inter-sexual differences in the morphometry of the Hang-nest tody-tyrant Hemitriccus nidipendulus (Passeriformes: Rhynchocyclidae), Zoologia, 2019. https://doi.org/10.3897/zoologia.36.e32771

  21. Miyaki, C.Y., Sex identification of parrots, toucans, and curassows by PCR: perspectives for wild and captive population studies, Zoo Biol., 1998, vol. 17, pp. 415–423. https://doi.org/10.1002/(SICI)1098-2361(1998)17:5<415::AID-ZOO6>3.0.CO;2-2

    Article  Google Scholar 

  22. Patino, L., Cruz, M., Martinez, P., and Cedeno-Escobar, V., Using PCR-RFLP for sexing of the endangered Galapagos petrel (Pterodroma phaeopygia), Genet. Mol. Res., 2013, vol. 12, no. 2, pp. 4760–4767. https://doi.org/10.4238/2013.October.18.13

    Article  CAS  PubMed  Google Scholar 

  23. Penteriani, V., Alonso-Alvarez, C., del Mar Delgado, M., Sergio, F., and Ferrer, M., Brightness variability in the white badge of the eagle owl Bubo bubo, J. Avian Biol., 2006, vol. 37, no. 1, pp. 110–116. https://doi.org/10.1111/j.0908-8857.2006.03569.x

    Article  Google Scholar 

  24. Ravindran, S., Saufi, S., Amni, W.N., Ishak, I., Hamid, N.H., Abidin, C.M.R.Z., Ahmad, A.H., Azzam, G., and Salim, H., Sex identification comparison of barn owls (Tyto alba javanica) using morphological features and molecular-based methods, Slovak Raptor J., 2018, vol. 12, pp. 47–54.https://doi.org/10.2478/srj-2018-0005

  25. Ravindran, S., Woo, W.K., Saufi, S., Amni, W.N., Hamid, N.H., Abidin, C.M.R.Z., Ishak, I., Azzam, G., and Salim, H., Molecular sexing of Southeast Asian barn owl, Tyto alba javanica, using blood and feather, Trop. Life Sci. Res., 2019, vol. 30, no. 2, pp. 13–23. https://doi.org/10.21315/tlsr2019.30.2.2

    Article  Google Scholar 

  26. Sacchi, P., Soglia, D., Maione, S., Meneguz, G., Campora, M., and Rasero, R., A non-invasive test for sex identification in short-toed Eagle (Circa etus gallicus), Mol. Cell Prob., 2004, vol. 18, no. 3, pp. 193–196. https://doi.org/10.1016/j.mcp.2004.01.002

    Article  CAS  Google Scholar 

  27. Seidensticker, M.T., Holt, D.W., Detienne, J., Talbot, S., and Gray, K., Sexing young snowy owls, J. Raptor Res., 2011, vol. 45, no. 4, pp. 281–289. https://doi.org/10.3356/JRR-11-02.1

    Article  Google Scholar 

  28. Tornberg, R., Mikkola, H., and Rytkönen, S., Morphometric sex determination of Great Grey Owls Strix nebulosa, Ornis Norvegica, 2016, vol. 39, pp. 6–10. https://doi.org/10.15845/on.v39i0.991

    Article  Google Scholar 

  29. Valadan, R., Nejatollahi, F., Ehsaninori, H., Habibi, H., Amini, H., and Aliabadian, M., Avian gametologs as molecular tags for sex identification in birds of prey of Iran, Zoo Biol., 2017, vol. 36, no. 8, pp. 289–293. https://doi.org/10.1002/zoo.21363

    Article  CAS  PubMed  Google Scholar 

  30. Vucicevic, M., Stevanov-Pavlovic, M., Stevanovic, J., Bosnjak, J., Gajic, B., Aleksic, N., and Stanimirovic, Z., Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing, Zoo Biol., 2013, vol. 32, pp. 269–276. https://doi.org/10.1002/zoo.21010

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L.C., Severinghaus, L.L., Chen, C.T., Liu, L.Y., Pan, C.H., Huang, D., Lee, H.Y., Lir, J.T., Chin, S.C., and Pu, C.E., Sex identification of owls (family Strigidae) using oligonucleotide microarrays, J. Hered., 2008, vol. 99, no. 2, pp. 187–192. doi.org/https://doi.org/10.1093/jhered/esm107

    Article  CAS  PubMed  Google Scholar 

  32. Wang, P.H., Hsu, H.A., Chao, M.C., Chan, F.T., Wang, L.M., Lin, P.I., Tsao, H.S., Yuan, H.W., Chen, C.C., and Ding, S.T., Sex identification in the Collared Scops Owl (Otus bakkamoena) with novel markers generated by random amplified polymorphic DNA, Conserv. Genet Res., 2013, vol. 5, pp. 239–242. https://doi.org/10.1007/s12686-012-9778-3

    Article  Google Scholar 

Download references

Funding

The research was not funded by third-party commercial organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Kulibaba.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. Studies were carried out using Bubo bubo feathers as a source of biological material without direct manipulations concerning birds.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulibaba, R.O., Liashenko, Y.V. Analysis of CHD Gene Polymorphism as a Model Object for Molecular Sexing of Eurasian Eagle-Owl (Bubo bubo). Cytol. Genet. 55, 324–330 (2021). https://doi.org/10.3103/S0095452721040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721040071

Keywords:

Navigation