Skip to main content
Log in

Molecular Organization and Polymorphism of 5S rDNA in Carpathian Bees

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The natural distribution area of the western honey bee, Apis mellifera L., covers Europe, West Asia and Africa. Adaptation to local environmental conditions resulted in the formation of numerous subspecies and ecotypes of western honey bee, which represent a convenient model for studying the microevolution of insects. Genomic region encoding 5S rRNA (5S rDNA) is a popular tool for investigation of the molecular evolution and phylogeny of closely related animal and plant taxa. In this article, we present the results of the analysis of 5S rDNA polymorphism in two breeding races, Rakhiv and Hoverla, of the Carpathian breed of western honey bee, which represents the local ecotype of the subspecies A. m. carnica, and compare them with the data available in the Genbank database for this subspecies and the Asian species A. cerana. It was found that in the genome of A. m. carnica there are at least two classes of 5S rDNA, each of which includes several structural variants. The genomes of the two studied races of the Carpathian breed and that of the A. m. carnica from Genbank differ in the sets of such variants, while the 5S rDNA repeated units of the of A. cerana are identical within the genome. The obtained results indicate a high intra- and intergenomic polymorphism of 5S rDNA in A. m. carnica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abou-Shaara, H.F., Abbas, A.S., et al., Exploring the non-coding regions in the mtDNA of some honey bee species and subspecies, Saudi J. Bio. Sci., 2021, vol. 28, no. 1, pp. 204–209. https://doi.org/10.1016/j.sjbs.2020.09.047

    Article  CAS  Google Scholar 

  2. Allendorf, F.W., Leary, R.F., et al., The problems with hybrids: setting conservation guidelines, Trends Ecol. Evol., 2001, vol. 16, pp. 613–622. https://doi.org/10.1016/S0169-5347(01) 02290-X

  3. Altschul, S.F., Gish, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  4. Bardella, V.B. and Cabral-de-Mello, D.C., Uncovering the molecular organization of unusual highly scattered 5S rDNA: the case of Chariesterus armatus (Heteroptera), Gene, 2018, vol. 646, pp. 153–158. https://doi.org/10.1016/j.gene.2017.12.030

    Article  CAS  PubMed  Google Scholar 

  5. Barman, A.S., Singh, M., et al., Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes), Genetica, 2016, vol. 144, no. 6, pp. 723–732. https://doi.org/10.1007/s10709-016-9938-6

    Article  CAS  PubMed  Google Scholar 

  6. Boardman, L., Eimanifar, A., et al., The complete mitochondrial genome of the West African honey bee Apis mellifera adansonii (Insecta: Hymenoptera: Apidae), Mitochondrial DNA, Part B, 2020a, vol. 5, no. 1, pp. 11–12. https://doi.org/10.1080/23802359.2019.1693308

    Article  Google Scholar 

  7. Boardman, L., Eimanifar, A., et al., The mitochondrial genome of Apis mellifera simensis (Hymenoptera: Apidae), an Ethiopian honey bee, Mitochondrial DNA, Part B, 2020b, vol. 5, no. 1, pp. 9–10. https://doi.org/10.1080/23802359.2019.1693307

    Article  Google Scholar 

  8. Brown, P, Newstrom-Lloyd, L.E., et al., Winter 2016 honey bee colony losses in New Zealand, J. Apic. Res., 2018, vol. 57, no. 2, pp. 278–291. https://doi.org/10.1080/00218839.2018.1430980

    Article  Google Scholar 

  9. Bueno, D., Palacios-Gimenez, O.M., et al., The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization, Mol. Gen. Genomics, 2016, vol. 291, no. 4, pp. 1607–1613. https://doi.org/10.1007/s00438-016-1204-1

    Article  CAS  Google Scholar 

  10. Bustos, A., Figueroa, R.I., et al., The 5S rRNA genes in Alexandrium: their use as a FISH chromosomal marker in studies of the diversity, cell cycle and sexuality of dinoflagellates, Harmful Algae, 2020, vol. 98. doi.org/https://doi.org/10.1016/j.hal.2020.101903

  11. Cavalcante, M.G., Nagamachi, C.Y., et al., Evolutionary insights in Amazonian turtles (Testudines, Podocnemididae): co-location of 5S rDNA and U2 snRNA and wide distribution of Tc1/Mariner, Biol. Open, 2020, vol. 9, no. 4, art. bio049817. https://doi.org/10.1242/bio.049817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cherevatov, O.V. and Volkov, R.A., Molecular organization of 5S ribosomal DNA of Polyommatus icarus, Bull. Vavilov Soc. Genet. Breed. Ukr., 2010, vol. 8, no. 2, pp. 271–278.

    Google Scholar 

  13. Cherevatov, O.V. and Volkov, R.A., Molecular organization of 5S rDNA of Satyrus drias (Lepidoptera), Rep. Natl. Acad. Sci. Ukr., 2011a, no. 1, pp. 140–145.

  14. Cherevatov, O.V. and Volkov, R.A., Organization of 5S ribosomal DNA of Melitaea trivia, Cytol. Genet., 2011b, vol. 45, no. 2, pp. 115–120. https://doi.org/10.3103/S0095452711020034

    Article  Google Scholar 

  15. Cherevatov, O.V., Statna, A.P., and Volkov, R.A., Novel structural subclass of Lycaena tityrus 5S ribosomal DNA, Bull. Vavilov Soc. Genet. Breed. Ukr., 2012, vol. 10, no. 2, pp. 202–207.

    Google Scholar 

  16. Cherevatov, O.V., Panchuk, I.I., et al., Molecular diversity of the CoI-CoII spacer region in the mitochondrial genome and the origin of the Carpathian bee, Cytol. Genet., 2019, vol. 53, no. 4, pp. 276–281. https://doi.org/10.3103/S009 5452719040030

  17. Cherevatov, O.V., Melnik, E.O., and Volkov, R.A., Polymorphism of COI gene in honey bees from different regions of Ukraine, Bull. Vavilov Soc. Genet. Breed. Ukr., 2020, vol. 18, nos. 1–2, pp. 22–28.

    Google Scholar 

  18. Ding, Q., Li, R., et al., Genomic architecture of 5S rDNA cluster and its variations within and between species, bioRxiv, 2021. https://doi.org/10.1101/2021.02.17.431734

  19. Fedoriak, M.M., Tymochko, L.I., et al., Winter losses of honey bee (Apis mellifera L.) colonies in Ukraine (monitoring results of 2015–2016), Ukr. J. Ecol., 2017, vol. 7, no. 4, pp. 604–613. https://doi.org/10.15421/2017_167

    Article  Google Scholar 

  20. Ferher, J., Skavikova, R., et al., Molecular evolution and organization of ribosomal DNA in the Hawkweed tribe Hieraciinae (Cichorieae, Asteraceae), Front. Plant Sci., 2021, vol. 12, p. 647375. https://doi.org/10.3389/fpls.2021.647375

    Article  Google Scholar 

  21. Francoso, E., Araujo, N., et al., Evolutionary perspectives on bee mtDNA from mito-OMICS analyses of a solitary species, Apidologie, 2020, vol. 51, pp. 531– 544. https://doi.org/10.1007/s13592-020-00740-x

    Article  CAS  Google Scholar 

  22. Garnery, L., Cornuet, J.M., et al., Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis, Mol. Ecol., 1992, vol. 1, pp. 145–154. https://doi.org/10.1111/j.1365-294X.1992.tb00170

    Article  CAS  PubMed  Google Scholar 

  23. Garsia, S., Kovarik, A., et al., Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database, Plant J., 2017, vol. 89, pp. 1020–1030.https://doi.org/10.1111/tpj.13442

    Article  CAS  Google Scholar 

  24. Gray, A., Adjlane, N., et al., Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss, J. Apic. Res., 2020, vol. 59, no. 5, pp. 744–751. https://doi.org/10.1080/002188 39.2020.1797272

  25. Gupta, R.K., Reybroeck, W., et al., Beekeeping for Poverty Alleviation and Livelihood Security, vol. 1: Technological Aspects of Beekeeping, Netherlands: Springer, 2014.

    Google Scholar 

  26. Henriques, D., Chavez-Galarza, J., et al., From the popular tRNAleu-COX2 intergenic region to the mitogenome: insights from diverse honey bee populations of Europe and North Africa, Apidologie, 2019, vol. 50, pp. 215–229. https://doi.org/10.1007/s13592-019-00632-9

    Article  Google Scholar 

  27. Higgins, D.G., Bleasby, A.J., and Fuchs, R., CLUSTAL V: improved software for multiple sequence alignment, Bioinformatics, 1992, vol. 8, no. 2, pp. 189–191. https://doi.org/10.1093/bioinformatics/8.2.189

    Article  CAS  Google Scholar 

  28. Ishchenko, O.O., Panchuk, I.I., et al., Molecular organization of 5S ribosomal DNA of Deschapmpsia antarctica, Cytol. Genet., 2018, vol. 52, pp. 416–421. https://doi.org/10.3103/S0095452718060105

    Article  Google Scholar 

  29. Ishchenko, O.O., Bednarska, O.I., and Panchuk, I.I., Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae), Cytol. Genet., 2021, vol. 55, no. 1, pp. 10–18. https://doi.org/10.3103/S0095452721010096

    Article  Google Scholar 

  30. Kek, S.P., Chin, N.L., et al., Molecular identification of honey entomological origin based on bee mitochondrial 16S rRNA and COI gene sequences, Food Control, 2017. https://doi.org/10.1016/j.foodcont.2017.02.025

  31. Kotthoff, U., Wappler, T., and Engel, M.S., Greater past disparity and diversity hints at ancient migrations of European honey bee lineages into Africa and Asia, J. Biogeogr., 2013, vol. 40, pp. 1832–1838. https://doi.org/10.1111/jbi.12151

    Article  Google Scholar 

  32. Kulhanek, K., Steinhauer, N., et al., A national survey of managed honey bee 2015–2016 annual colony losses in the USA, J. Apic. Res., 2017, vol. 56, no. 4, pp. 328–340. https://doi.org/10.1080/00218839.2017.1344496

    Article  Google Scholar 

  33. Layat, E., Saez-Vasquez, J., and Tourmente, S., Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis, Plant Cell Phys., 2012, vol. 53, no. 2, pp. 267–276. https://doi.org/10.1093/pcp/pcr177

    Article  CAS  Google Scholar 

  34. Layat, E., Probst, A.V., and Tourmente, S., Structure, function and regulation of transcription factor IIIA: from Xenopus to Arabidopsis, Biochim. Biophys. Acta, 2013, vol. 1829, pp. 274–282. https://doi.org/10.1016/j.bbagrm.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  35. Martins, C. and Galetti, P.M., Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes?, Genetica, 2001, vol. 111, pp. 439–446.

    Article  CAS  PubMed  Google Scholar 

  36. Morton, D.G. and Sprague, K.U., In vitro transcription of a silkworm 5S RNA gene requires an upstream signal, Proc. Natl. Acad. Sci. U. S. A., 1984, vol. 81, pp. 5519–5522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nelson, D.W., Linning, R.M., et al., 5'-Flanking sequences required for efficient transcription in vitro of 5S RNA genes, in the related nematodes Caenorhabditis elegans and Caenorhabditis briggsae, Gene, 1998, vol. 218, pp. 9–16.

    Article  CAS  PubMed  Google Scholar 

  38. Neumann, P., Norman, L.C., et al., Honey bee colony losses, J. Api. Res., 2010, vol. 49, no. 1, pp. 1–6. https://doi.org/10.3896/IBRA.1.49.1.01

    Article  Google Scholar 

  39. Oliveira, N.L., Cabral-de-Mello, D.V., et al., Chromosomal mapping of rDNAs and H3 histone sequences in the grasshopper Rhammatocerus brasiliensis (Acrididae, Gomphocerinae): extensive chromosomal dispersion and co-localization of 5S rDNA/H3 histone clusters in the A complement and B chromosome, Mol. Cytogenet., 2011, vol. 4, p. 24. https://doi.org/10.1186/1755-8166-4-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oliveira, S.G., Cabral-de-Mello, D.C., et al., Heterochromatin, sex chromosomes and rRNA gene clusters in Coprophanaeus beetles (Coleoptera, Scarabaeidae), Cytogenet. Genome Res., 2012, vol. 138, pp. 46–55. https://doi.org/10.1159/000339648

    Article  CAS  PubMed  Google Scholar 

  41. Pieler, T., Hamm, J., and Roeder, R.G., The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing, Cell, 1987, vol. 48, pp. 91–100. https://doi.org/10.1016/0092-8674(87)90359-X

    Article  CAS  PubMed  Google Scholar 

  42. Pinhal, D., Yoshimura, T.S., et al., The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays, BMC Evol. Biol., 2011, vol. 11, p. 151. https://doi.org/10.1186/1471-2148-11-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Polishchuk, V.P. and Gaidar, V.A., Apiary, Kiev, Ukraine: Perfect style, 2008.

  44. Qin, Q.B., Liu, Q.W., et al., Molecular organization and chromosomal localization analysis of 5S rDNA clusters in autotetraploids derived from Carassius auratus Red Var. (♀) × Megalobrama amblycephala (♂), Front. Genet., 2019, vol. 10, p. 437. https://doi.org/10.3389/fgene.2019.00437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruttner, F., Biogeography and Taxonomy of Honeybees, Berlin: Springer-Verlag, 1988. https://doi.org/10.1007/978-3-642-72649-1

    Book  Google Scholar 

  46. Ruttner, F., Naturgeschichte der Honigbienen, Munich, Germany: Ehrenwirth, 1992.

    Google Scholar 

  47. Schiebelhut, L.M., Abboud, S.S., et al., A comparison of DNA extraction methods for high-throughput DNA analyses, Mol. Ecol. Res., 2017, vol. 17, no. 4, pp. 721–729.

    Article  CAS  Google Scholar 

  48. Sharp, S.J. and Garcia, A.D., Transcription of the Drosophila melanogaster 5S RNA gene requires an upstream promoter and four intragenic sequences elements, Mol. Cell Biol., 1988, vol. 8, no. 3, pp. 1266–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon, L., Rabanal, F.A., et al., Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana, Nucleic Acids Res., 2018, vol. 46, no. 6, pp. 3019–303. https://doi.org/10.1093/nar/gky163

  50. Slathia, I. and Tripathi, N.K., Genetic diversity of Apis mellifera (Hymenoptera: Insecta)—a review, J. New Biol. Rep., 2016, vol. 5, no. 3, pp. 148–164.

    Google Scholar 

  51. Stanimirovic, Z., Glavinic, U., et al., Looking for the causes of and solutions to the issue of honey bee colony losses, Acta Vet-Beogr., 2019, vol. 69, no. 1, pp. 1–31. https://doi.org/10.2478/acve-2019-0001

    Article  Google Scholar 

  52. Tihelka, E., Cai, C., et al., Mitochondrial genomes illuminate the evolutionary history of the western honey bee (Apis mellifera), Sci. Rep., 2020, vol. 10, p. 14515. https://doi.org/10.1038/s41598-020-71393-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tynkevich, Y.O. and Volkov, R.A., 5S ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application, Cytol. Genet., 2019, vol. 53, no. 6, pp. 459–466. https://doi.org/10.3103/S0095452719060100

    Article  Google Scholar 

  54. Tyler, B.M., Transcription of Neurospora crassa 5S rRNA genes requires a TATA box and three internal elements, J. Mol. Biol., 1987, vol. 196, pp. 801–811. https://doi.org/10.1016/0022-2836(87)90406-2

    Article  CAS  PubMed  Google Scholar 

  55. Vierna, J., Wehner, S., et al., Systematic analysis and evolution of 5S ribosomal DNA in metazoans, Heredity, 2013, vol. 111, pp. 410–421. https://doi.org/10.1038/hdy.2013.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vizoso, M., Vierna, J., et al., The 5S rDNA gene family in mollusks: characterization of transcriptional regulatory regions, prediction of secondary structures, and long-term evolution, with special attention to Mytilidae mussels, J. Hered., 2011, vol. 102, no. 4, pp. 433–447. https://doi.org/10.1093/jhered/esr046

    Article  CAS  PubMed  Google Scholar 

  57. Vozarova, R., Herklotz, V., et al., Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis, Front. Plant Sci., 2021, vol. 12, p. 643548. https://doi.org/10.3389/fpls.2021.643548

    Article  PubMed  PubMed Central  Google Scholar 

  58. Whitfield, C.W., Behura, S.K., Berlocher, S.H., et al., Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera, Science, 2006, vol. 314, no. 5799, pp. 642–645. https://doi.org/10.1126/science.1132772

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the Ministry of Education and Science of Ukraine (grant no. 0120U102119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Volkov.

Ethics declarations

The authors declare that they have no competing interests. This article does not contain any studies involving humans or vertebrates as objects of study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshka, N.M., Cherevatov, O.V. & Volkov, R.A. Molecular Organization and Polymorphism of 5S rDNA in Carpathian Bees. Cytol. Genet. 55, 405–413 (2021). https://doi.org/10.3103/S0095452721050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721050108

Keywords:

Navigation