Skip to main content
Log in

Putative Group I Introns in the Nuclear Internal Transcribed Spacer of the Basidiomycete Fungus Gautieria Vittad

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Group I introns are self-splicing ribozymes that insert into protein and RNA coding genes. In ribosomal RNA genes, group I introns can intervene the small subunit (SSU) and large subunit (LSU) of various prokaryotic and lower eukaryotic organisms including protists and fungi. However, it is unusual to encounter them in the nuclear internal transcribed spacer (ITS) region. In this study, exceptionally long ITS regions of the fungal species from the genus Gautieria were analyzed. The unusually long ITS region of a newly isolated Gautireia specimen (ANK Akata and Sahin 001) and ITS sequences of the G. monticola isolates present in GenBank were bioinformatically analyzed. In addition to the presence of tandem repeats, the increased size of the ITS sequences analyzed herein was found to be due to the presence of group I introns in the ITS1 regions of both newly isolated specimen and different isolates of G. monticola. The secondary structures of the identified introns could be formed in accordance with the group I intron models, and they clustered with group I introns in conserved core domain-based phylogeny. The molecular phylogenetic analysis performed based on the ITS sequences of the genus Gautieria revealed the occurrence of at least two independent intron invasion event in the evolutionary process of this genus. This is the first study reporting on the presence of group I introns in the ITS region of a higher fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ankenbrand, M.J., Keller, A., Wolf, M., et al., ITS2 Database V: twice as much, Mol. Biol. Evol., 2015, vol. 32, no. 11, pp. 3030–3032. https://doi.org/10.1093/molbev/msv174

    Article  CAS  PubMed  Google Scholar 

  2. Arenas, M., Trends in substitution models of molecular evolution, Front. Genet., 2015, vol. 6, p. 319. https://doi.org/10.3389/fgene.2015.00319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benson, G., Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res., 1999, vol. 27, no. 2, pp. 573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhattacharya, D., Reeb, V., Simon, D.M., and Lutzoni, F., Phylogenetic analyses suggest reverse splicing spread of group I introns in fungal ribosomal DNA, BMC Evol. Biol., 2005, vol. 5, p. 68. https://doi.org/10.1186/1471-2148-5-68

    Article  CAS  PubMed  Google Scholar 

  5. Chen, L., Cai, Y., Zhou, G., et al., Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens, PLoS One, 2014, vol. 9, no. 2, e88886. https://doi.org/10.1371/journal.pone.0088886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chevalier, B.S., and Stoddard, B.L., Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility, Nucleic Acids Res., 2001, vol. 29, no. 18, pp. 3757–3774. https://doi.org/10.1093/nar/29.18.3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corsaro, D., and Venditti, D., Putative group I introns in the eukaryote nuclear internal transcribed spacers, Curr. Genet., 2020, vol. 66, no. 2, pp. 373–384. https://doi.org/10.1007/s00294-019-01027-0

    Article  CAS  PubMed  Google Scholar 

  8. Danchin, E.G., Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube?, BMC Biol., 2016, vol. 14, no. 1, p. 101. https://doi.org/10.1186/s12915-016-0330-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Rijk, P., Wuyts, J., and De Wachter, R., RnaViz 2: an improved representation of RNA secondary structure, Bioinformatics, 2003, vol. 19, no. 2, pp. 299–300. https://doi.org/10.1093/bioinformatics/19.2.299

    Article  CAS  PubMed  Google Scholar 

  10. Gibb, E.A. and Hausner, G., A group I intron-like sequence in the nuclear small ribosomal subunit gene of the ophiostomatoid fungus Gondwanamyces proteae, Mycol. Res., 2003, vol. 107, no. 12, pp. 1442–1450. https://doi.org/10.1017/s0953756203008773

    Article  CAS  PubMed  Google Scholar 

  11. Goddard, M.R., Leigh, J., Roger, A.J., and Pemberton, A.J., Invasion and persistence of a selfish gene in the Cnidaria, PLoS One, 2006, no. 1, e3. https://doi.org/10.1371/journal.pone.0000003

  12. Griesenbeck, J., Tschochner, H., and Grohmann, D., Structure and function of RNA polymerases and the transcription machineries, Subcell. Biochem., 2017, vol. 83, pp. 225–270. https://doi.org/10.1007/978-3-319-46503-6_9

    Article  CAS  PubMed  Google Scholar 

  13. Haugen, P., Simon, D.M., and Bhattacharya, D., The natural history of group I introns, Trends Genet., 2005, vol. 21, no. 2, pp. 111–119. https://doi.org/10.1016/j.tig.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  14. Hedberg, A. and Johansen, S.D., Nuclear group I introns in self-splicing and beyond, Mob. DNA, 2013, vol. 4, no. 1, p. 17. https://doi.org/10.1186/1759-8753-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henras, A.K., Plisson-Chastang, C., O’Donohue, M.F., et al., An overview of pre-ribosomal RNA processing in eukaryotes, Wiley Interdiscip. Rev., RNA, 2015, vol. 6, no. 2, pp. 225–242. https://doi.org/10.1002/wrna.1269

    Article  CAS  PubMed  Google Scholar 

  16. Hibbett, D.S., Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi, Mol. Biol. Evol., 1996, vol. 13, no. 7, pp. 903–917. https://doi.org/10.1093/oxfordjournals.molbev.a025658

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michel, F., and Westhof, E., Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis, J. Mol. Biol., 1990, vol. 216, no. 3, pp. 585–610. https://doi.org/10.1016/0022-2836(90)90386-Z

    Article  CAS  PubMed  Google Scholar 

  19. Paredes-Esquivel, C.C. and Townson, H., Functional constraints and evolutionary dynamics of the repeats in the rDNA internal transcribed spacer 2 of members of the Anopheles barbirostris group, Parasit. Vectors, 2014, vol. 7, p. 106. https://doi.org/10.1186/1756-3305-7-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R., et al., How many bootstrap replicates are necessary?, J. Comput. Biol., 2010, vol. 17, no. 3, pp. 337–354. https://doi.org/10.1089/cmb.2009.0179

    Article  CAS  PubMed  Google Scholar 

  21. Sahin, E. and Akata, I., Viruses infecting macrofungi, Virus Dis., 2018, vol. 29, no. 1, pp. 1–18. https://doi.org/10.1007/s13337-018-0434-8

    Article  Google Scholar 

  22. Santamaria, M., Fosso, B., Licciulli, F., et al., ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences, Nucleic Acids Res., 2018, vol. 46, no. D1, pp. D127–D132. https://doi.org/10.1093/nar/gkx855

    Article  CAS  PubMed  Google Scholar 

  23. Schuster, A., Lopez, J.V., Becking, L.E., et al., Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding, BMC Evol. Biol., 2017, vol. 17, no. 1, p. 82. https://doi.org/10.1186/s12862-017-0928-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suh, S.O., Jones, K.G., and Blackwell, M., A Group I intron in the nuclear small subunit rRNA gene of Cryptendoxyla hypophloia, an ascomycetous fungus: evidence for a new major class of Group I introns, J. Mol. Evol., 1999, vol. 48, no. 5, pp. 493–500. https://doi.org/10.1007/pl00006493

    Article  CAS  PubMed  Google Scholar 

  25. Thines, M., Characterisation and phylogeny of repeated elements giving rise to exceptional length of ITS2 in several downy mildew genera (Peronosporaceae), Fungal Genet. Biol., 2007, vol. 44, no. 3, pp. 199–207. https://doi.org/10.1016/j.fgb.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, M.Y., and Gomez-Sanchez, C.E., Universal TA cloning, Curr. Issues Mol. Biol., 2000, vol. 2, no. 1, pp. 1–7.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Dr. Ilgaz Akata for his valuable contributions to the collection and conventional identification of the Gautieria sp. specimens.

Funding

The study was implemented using the grant of the Ankara University Research Projects Funding Unit with the project no. 19B0430002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergin Sahin.

Ethics declarations

The author declares no conflict of interest. This article does not contain any in vivo studies involving animals or human participants conducted by the author.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, E. Putative Group I Introns in the Nuclear Internal Transcribed Spacer of the Basidiomycete Fungus Gautieria Vittad. Cytol. Genet. 55, 471–479 (2021). https://doi.org/10.3103/S009545272105011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545272105011X

Navigation