Skip to main content
Log in

Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Skeletal muscles are heterogeneous tissue containing different types of muscle fibers. Their distribution depends on heredity, type of exercise, sex, age, and muscle type. In addition, stem cells (myosatellitocytes) are found in large amounts in the muscle tissue. Myosatellitocytes are the main material for regeneration of microtears of muscle fibers always occuring during intensive physical exercises. Myosatellitocytes are capable of long-term storage in an inactive “dormant” state, but they can be rapidly activated to provide an efficient repair of damaged muscle fibers. The metabolism of myosatellitocytes and myoblasts and their migration into the damaged area are regulated by a complex system of cytokines and transcription factors, the activity of which depends on many factors. Microtears initiating the development of the inflammatory process and activation of myosatellitocytes is a determining factor. The study into molecular mechanisms of the relationship between inflammatory processes in muscle tissue and changes in myosatellitocyte metabolism is of fundamental importance and is necessary for the selection of efficient methods for muscle tissue recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

Similar content being viewed by others

REFERENCES

  1. Abreu, P., Serna, J.D.C., Munhoz, A.C., and Kowaltowski, A.J., Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation, Mech. Ageing Dev., 2020, vol. 192, art. ID 111362. https://doi.org/10.1016/j.mad.2020.111362

    Article  CAS  PubMed  Google Scholar 

  2. Ahmetov, I.I., Druzhevskaya, A., Lyubaeva, E.V., Popov, D.V., Vinogradova, O.L., Williams, A.G., The dependence of preferred competitive racing distance on muscle fibre composition and ACTN3 genotype in speed skaters, Exp. Physiol., 2011, vol. 96, no. 12, pp. 1302–1310. https://doi.org/10.1113/expphysiol.2011.060293

    Article  PubMed  Google Scholar 

  3. Anderson, J.E., A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells, Mol. Biol. Cell., 2000, vol. 11, no. 5, pp. 1859–1874. https://doi.org/10.1091/mbc.11.5.1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bisetto, S., Wright, M.C., Nowak, R.A., Lepore, A.C., Khurana, T.S., Loro, E., and Philp, N.J., New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity, Science, 2019, vol. 22, pp. 507–518. https://doi.org/10.1016/j.isci.2019.11.041

    Article  Google Scholar 

  5. Blondelle, J., Shapiro, P., Domenighetti, A.A., and Lange, S., Cullin E3 ligase activity is required for myoblast differentiation, J. Mol. Biol., 2017, vol. 429, no. 7, pp. 1045–1066. https://doi.org/10.1016/j.jmb.2017.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bosch-Presegue, L. and Vaquero, A., Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity, FEBS J., 2015, vol. 282, no. 9, pp. 1745–1767. https://doi.org/10.1111/febs.13053

    Article  CAS  PubMed  Google Scholar 

  7. Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C., and Rando, T.A., Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis, Science, 2007, vol. 317, no. 5839, pp. 807–810. https://doi.org/10.1126/science.1144090

    Article  CAS  PubMed  Google Scholar 

  8. Brack, A.S. and Rando, T.A., Tissue-specific stem cells: lessons from the skeletal muscle satellite cell, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 504–514. https://doi.org/10.1016/j.stem

  9. Britto, F.A., Gnimassou, O., De Groote, E., Balan, E., Warnier, G., Everard, A., Cani, P.D., and Deldicque, L., Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human, FASEB J., 2020, vol. 34, no, 1, pp. 1885–1900. https://doi.org/10.1096/fj.201902244R

    Article  CAS  PubMed  Google Scholar 

  10. Canto, C. and Auwerx, J., Calorie restriction: is AMPK a key sensor and effector?, Physiology, 2011, vol. 26, pp. 214–224. https://doi.org/10.1152/physiol.00010.2011

    Article  CAS  PubMed  Google Scholar 

  11. Cerletti, M., Jang, Y.C., Finley, L.W., Haigis, M.C., and Wagers, A.J., Short-term calorie restriction enhances skeletal muscle stem cell function, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 515–519. https://doi.org/10.1016/j.stem.2012.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collins-Hooper, H., Woolley, T.E., Dyson, L., Patel, A., Potter, P., Baker, R.E., Gaffney, E.A., Maini, P.K., Dash, P.R., and Patel, K., Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration, Stem Cells, 2012, vol. 30, no. 6, pp. 1182–1195. https://doi.org/10.1002/stem.1088

    Article  CAS  PubMed  Google Scholar 

  13. Dell’Orso, S., Juan, A.H., Ko, K.D., Naz, F., Perovanovic, J., Gutierrez-Cruz, G., Feng, X., and Sartorelli, V., Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions, Development, 2019, vol. 146, no. 12, art. ID dev174177. https://doi.org/10.1242/dev.174177

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dong, Z., Saikumar, P., Weinberg, J.M., and Venkatachalam, M.A., Calcium in cell injury and death, Annu. Rev. Pathol., 2006, vol. 1, pp. 405–434. https://doi.org/10.1146/annurev.pathol.1.110304.100218

    Article  CAS  PubMed  Google Scholar 

  15. Fang, Y., Tang, S., and Li, X., Sirtuins in metabolic and epigenetic regulation of stem cells, Trends Endocrinol. Metab., 2019, vol. 30, pp. 177–188. https://doi.org/10.1016/j.tem.2018.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuchs, E. and Chen, T., A matter of life and death: self-renewal in stem cells, EMBO Rep., 2013, vol. 14, no. 1, pp. 39–48. https://doi.org/10.1038/embor.2012.197

    Article  CAS  PubMed  Google Scholar 

  17. Fukada, S., Uezumi, A., Ikemoto, M., Masuda, S., Segawa, M., Tanimura, N., Yamamoto, H., Miyagoe-Suzuki, Y. and Takeda, S., Molecular signature of quiescent satellite cells in adult skeletal muscle, Stem Cells, 2007, vol. 25, no. 10, pp. 2448–2459. https://doi.org/10.1634/stemcells.2007-0019

    Article  CAS  PubMed  Google Scholar 

  18. Fuku, N., Kumagai, H., and Ahmetov, I., Genetics of muscle fiber composition, in Sports, Exercise, and Nutritional Genomics, 2019, vol. 14, pp. 295–314. https://doi.org/10.1016/B978-0-12-816193-7.00014-2

    Book  Google Scholar 

  19. Gerrits, M.F., Ghosh, S., Kavaslar, N., Hill, B., Tour, A., Seifert, E.L., Beauchamp, B., Gorman, S., Stuart, J., Dent, R., McPherson, R., and Harper, M.E., Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity, J. Lipid Res., 2010, vol. 51, no. 8, pp. 2394–2404. https://doi.org/10.1194/jlr.P005298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haizlip, K.M., Harrison, B.C., and Leinwand, L.A., Sex-based differences in skeletal muscle kinetics and fiber-type composition, Physiology, 2015, vol. 30, no. 1, pp. 30–39. https://doi.org/10.1152/physiol.00024.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halestrap, A.P. and Wilson, M.C., The monocarboxylate transporter family—Role and regulation, IUBMB Life, 2012, vol. 64, no. 2, pp. 109–119. https://doi.org/10.1002/iub.572

    Article  CAS  PubMed  Google Scholar 

  22. Hardie, D.G., Ross, F.A., and Hawley, S.A., AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell. Biol., 2012, vol. 13, no. 4, pp. 251–262. https://doi.org/10.1038/nrm3311

    Article  CAS  Google Scholar 

  23. Hendrickse, P.W., Venckunas, T., Platkevicius, J., Kairaitis, R., Kamandulis, S., Snieckus, A., Stasiulis, A., Vitkiene, J., Subocius, A., and Degens, H., Endurance training-induced increase in muscle oxidative capacity without loss of muscle mass in younger and older resistance-trained men, Eur. J. Appl. Physiol., 2021, vol. 121, no. 11, pp. 3161–3172. https://doi.org/10.1007/s00421-021-04768-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jing, H. and Lin, H., Sirtuins in epigenetic regulation, Chem. Rev., 2015, vol. 115, no. 6, pp. 2350–2375. https://doi.org/10.1021/cr500457h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kantarci, A. and Van Dyke, T.E., Lipoxins in chronic inflammation, Crit. Rev. Oral Biol. Med., 2003, vol. 14, no. 1, pp. 4–12. https://doi.org/10.1177/154411130301400102

    Article  PubMed  Google Scholar 

  26. Karalaki, M., Fili, S., Philippou, A. and Koutsilieris, M., Muscle regeneration: cellular and molecular events, In Vivo, 2009, vol. 23, no. 5, pp. 779–796.

    CAS  PubMed  Google Scholar 

  27. Klein, C.S., Marsh, G.D., Petrella, R.J., and Rice, C.L., Muscle fiber number in the biceps brachii muscle of young and old men, Muscle Nerve, 2003, vol. 28, no. 1, pp. 62–68. https://doi.org/10.1002/mus.10386

    Article  PubMed  Google Scholar 

  28. Kumagai, H., Tobina, T., Ichinoseki-Sekine, N., Kakigi, R., Tsuzuki, T., Zempo, H., Shiose, K., Yoshimura, E., Kumahara, H., Ayabe, M., Higaki, Y., Yamada, R., Kobayashi, H., Kiyonaga, A., Naito, H., Tanaka, H., Fuku, N., Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women, J. Appl. Physiol., 2018, vol. 124, no. 5, pp. 1377–1384. https://doi.org/10.1152/japplphysiol.00953.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar, V., Abbas, A.K. and Aster, J.C., Robbins Basic Pathology, Elsevier, 2012.

    Google Scholar 

  30. Kutseryb, T., Hrynkiv, M., Vovkanych, L., and Muzyka, F., Influence of basketball training on the features of women’s physique, J. Phys. Educ. Sport, 2019, vol. 19, no. 4, pp. 2384–2389. https://doi.org/10.7752/jpes.2019.04361

    Article  Google Scholar 

  31. Lamont, L.A., Tranquilli, W.J., and Grimm, K.A., Physiology of pain, Vet. Clin. North Am. Small Anim. Pract., 2000, vol. 30, no. 4, pp. 703–728. https://doi.org/10.1016/s0195-5616(08)70003-2

    Article  CAS  PubMed  Google Scholar 

  32. Latil, M., Rocheteau, P., Chatre, L., Sanulli, S., Mémet, S., Ricchetti, M., Tajbakhsh, S., and Chrétien, F., Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nat. Commun., 2012, vol. 3, art. ID 903. https://doi.org/10.1038/ncomms1890

    Article  CAS  PubMed  Google Scholar 

  33. Le Moal, E., Pialoux, V., Juban, G., Groussard, C., Zouhal, H., Chazaud, B., and Mounier, R., Redox control of skeletal muscle regeneration, Antioxid. Redox Signal, 2017, vol. 27, no. 5, 276–310. https://doi.org/10.1089/ars.2016.6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu L, Cheung, T.H., Charville, G.W., Hurgo, B.M., Leavitt, T., Shih, J., Brunet, A., and Rando, T.A., Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging, Cell Rep., 2013, vol. 4, no. 1, pp. 189–204. https://doi.org/10.1016/j.celrep.2013.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marzetti, E., Lawler, J.M., Hiona, A., Manini, T., Seo, A.Y., and Leeuwenburgh, C., Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle, Free Radical Biol. Med., 2008, vol. 44, no. 2, pp. 160–168. https://doi.org/10.1016/j.freeradbiomed.2007.05.028

    Article  CAS  Google Scholar 

  36. Mauro, A., Satellite cell of skeletal muscle fibers, J. Biophys. Biochem. Cytol., 1961, vol. 9, no. 2, pp. 493–495. https://doi.org/10.1083/jcb.9.2.493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mayer, U., Integrins: redundant or important players in skeletal muscle?, J. Biol. Chem., 2003, vol. 278, no. 17, pp. 14587–14590. https://doi.org/10.1074/jbc.R200022200

    Article  CAS  PubMed  Google Scholar 

  38. May-Simera, H.L. and Kelley, M.W., Cilia, Wnt signaling, and the cytoskeleton, Cilia, 2012, vol. 1, no. 1, art. ID 7. https://doi.org/10.1186/2046-2530-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., Bomze, D., Elena-Herrmann, B., Scherf, T., Nissim-Rafinia, M., Kempa, S., Itskovitz-Eldor, J., Meshorer, E., Aberdam, D., and Nahmias, Y., Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells, Cell Metab., 2015, vol. 21, no. 3, pp. 392–402. https://doi.org/10.1016/j.cmet.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  40. Nalbandian, M., Radak, Z., and Takeda, M., Lactate metabolism and satellite cell fate, Front. Physiol., 2020, vol. 11, art. ID 610983. https://doi.org/10.3389/fphys.2020.610983

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nathan, C. and Cunningham-Bussel, A., Beyond oxidative stress: an immunologist’s guide to reactive oxygen species, Nat. Rev. Immunol., 2013, vol. 13, pp. 349–361. https://doi.org/10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B., Arachidonic acid metabolism, Annu. Rev. Biochem., 1986, vol. 55, pp. 69–102. https://doi.org/10.1146/annurev.bi.55.070186.000441

    Article  CAS  PubMed  Google Scholar 

  43. Oishi, Y., Tsukamoto, H., Yokokawa, T., Hirotsu, K., Shimazu, M., Uchida, K., Tomi, H., Higashida, K., Iwanaka, N., and Hashimoto, T., Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy, J. Appl. Physiol., 2015, vol. 118, no. 6, pp. 742–749. https://doi.org/10.1152/japplphysiol.00054.2014

    Article  CAS  PubMed  Google Scholar 

  44. Otto, A., Collins-Hooper, H., Patel, A., Dash, P.R., and Patel, K., Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism, Rejuvenation Res., 2011, vol. 14, no. 3, pp. 249–260. https://doi.org/10.1089/rej.2010.1151

    Article  CAS  PubMed  Google Scholar 

  45. Pallafacchina, G., Blaauw, B., and Schiaffino, S., Role of satellite cells in muscle growth and maintenance of muscle mass, Nutr., Metab. Cardiovasc. Dis., 2013, vol. 23, pp. 12–18. https://doi.org/10.1016/j.numecd2012.02.002D

    Article  Google Scholar 

  46. Kaipainen, A., Greene, E.R., and Huang, S., Cytochrome P450-derived eicosanoids: the neglected pathway in cancer, Cancer Metastasis Rev., 2010, vol. 29, no. 4, pp. 723–735. https://doi.org/10.1007/s10555-010-9264-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quintero, A.J., Wright, V.J., Fu, F.H., and Huard, J., Stem cells for the treatment of skeletal muscle injury, Clin. Sports Med., 2009, vol. 28, no. 1, pp. 1–11. https://doi.org/10.1016/j.csm.2008.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  48. Radmark, O., Werz, O., Steinhilber, D., and Samuelsson, B., 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease, Biochim. Biophys. Acta, 2015, vol. 1851, no. 4, pp. 331–339. https://doi.org/10.1016/j.bbalip.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  49. Ricciotti, E. and FitzGerald, G.A., Prostaglandins and inflammation, Arterioscler., Thromb., Vasc. Biol., 2011, vol. 31, no. 5, pp. 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  CAS  Google Scholar 

  50. Rocheteau, P., Vinet, M., and Chretien, F., Dormancy and quiescence of skeletal muscle stem cells, Results Probl. Cell Differ., 2015, vol. 56, pp. 215–235. https://doi.org/10.1007/978-3-662-44608-9_10

    Article  CAS  PubMed  Google Scholar 

  51. Ryall, J.G., Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration, FEBS J., 2013, vol. 280, pp. 4004–4013. https://doi.org/10.1111/febs.12189

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt, M., Schüler, S.C., Hüttner, S.S., von Eyss, B., and von Maltzahn, J., Adult stem cells at work: regenerating skeletal muscle, Cell Mol. Life Sci., 2019, vol. 76, no. 13, pp. 2559–2570. https://doi.org/10.1007/s00018-019-03093-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schoenfeld, B.J., The mechanisms of muscle hypertrophy and their application to resistance training, J. Strength Cond. Res., 2010, vol. 24, no. 10, pp. 2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840f3

    Article  PubMed  Google Scholar 

  54. Scott, W., Stevens, J., and Binder-Macleod, S.A., Human skeletal muscle fiber type classifications, Phys. Ther., 2001, vol. 81, no. 11, pp. 1810–1816. PMID: 11694174

    Article  CAS  Google Scholar 

  55. Suwa, M., Nakamura, T., Katsuta, S., Heredity of muscle fiber composition and correlated response of the synergistic muscle in rats, Am. J. Physiol., 1996, vol. 271, no. 2, pp. R432–R436. https://doi.org/10.1152/ajpregu.1996.271.2.R432

    Article  CAS  PubMed  Google Scholar 

  56. Sybil, M.G., Pervachuk, R.V., and Trach, V.M., Personalization of freestyle wrestlers’ training process by influence the anaerobic systems of energy supply, J. Phys. Educ. Sport., 2015, vol. 15, no. 2, pp. 225–228. https://doi.org/10.7752/jpes.2015.02035

    Article  Google Scholar 

  57. Tang, A.H. and Rando, T.A., Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation, EMBO J., 2014, vol. 33, no. 23, pp. 2782–2797. https://doi.org/10.15252/embj.201488278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Theret, M., Gsaier, L., Schaffer, B., Juban, G., Ben Larbi, S., Weiss-Gayet, M., Bultot, L., Collodet, C., Foretz, M., Desplanches, D., Sanz, P., Zang, Z., Yang, L., Vial, G., Viollet, B., Sakamoto, K., Brunet, A., Chazaud, B., and Mounier, R., AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis, EMBO J., 2017, vol. 36, no. 13, pp. 1946–1962. https://doi.org/10.15252/embj.201695273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vierck, J., O’Reilly, B., Hossner, K., Antonio, J., Byrne, K., Bucci, L., and Dodson, M., Satellite cell regulation following myotrauma caused by resistance exercise, Cell Biol. Int., 2000, vol. 24, no. 5, 263–272. https://doi.org/10.1006/cbir.2000.0499

    Article  CAS  PubMed  Google Scholar 

  60. Wilkinson, D.J., Piasecki, M., and Atherton, P.J., The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans, Ageing Res. Rev., 2018, vol. 47, pp. 123–132. https://doi.org/10.1016/j.arr.2018.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Willkomm, L., Schubert, S., Jung, R., Elsen, M., Borde, J., Gehlert, S., Suhr, F., and Bloch, W., Lactate regulates myogenesis in C2C12 myoblasts in vitro, Stem Cell Res., 2014, vol. 12, no. 3, pp. 742–753. https://doi.org/10.1016/j.scr.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  62. Wright, E.M. and Woodson, J.F., Clinical assessment of pain in laboratory animals, in Rollin, B.E., Kesel, M.L., Eds., The Experimental Animal in Biologic Research, Boca Raton: CRC Press, 1990, pp. 205–216.

    Google Scholar 

  63. Yamakawa, H., Kusumoto, D., Hashimoto, H., and Yuasa, S., Stem cell aging in skeletal muscle regeneration and disease, Int. J. Mol. Sci., 2020, vol. 21, no. 5, art. ID 1830. https://doi.org/10.3390/ijms21051830

    Article  CAS  PubMed Central  Google Scholar 

  64. Zammit, P.S., Relaix, F., Nagata, Y., Ruiz, A.P., Collins, C.A., Partridge, T.A., Beauchamp, J.R., Pax7 and myogenic progression in skeletal muscle satellite cells, J. Cell Sci., 2006, vol. 119, pp. 1824–1832. https://doi.org/10.1242/jcs.02908

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded by any specific grant from the financial institutions in the state, commercial or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hashchyshyn.

Ethics declarations

The authors declare that they have no conflicts of interest. This article contains no studies involving human participants and animals as objects of study.

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashchyshyn, V., Tymochko-Voloshyn, R., Paraniak, N. et al. Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism. Cytol. Genet. 56, 253–260 (2022). https://doi.org/10.3103/S0095452722030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722030033

Keywords:

Navigation