Skip to main content
Log in

Seven-Single Nucleotide Polymorphism Polygenic Risk Score for Breast Cancer Risk Prediction in a Vietnamese Population

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Multiple common variations discovered via genome-wide association studies (GWASs) were shown to have a minimal association with breast cancer (BC) risk in Vietnamese women. This study analyzed the cumulative effect in predicting BC risk of ten single nucleotide polymorphisms (SNPs) identified by previous GWAS and were common in Vietnamese. In this case-control research, 240 BC patients and 271 healthy controls were recruited to assess candidate SNPs’ association with BC risk. A polygenic risk score (PRS) was then created from SNPs strongly related to the risk of BC among the assessed population. The area under the receiver operating characteristic curve (AUC) was used to assess the effectiveness of the PRS model with BC risk. Logistic regression results showed seven individual SNPs (rs2155209, rs4784227, rs2605039, rs3817198, rs2981582, rs11614913, and rs12325489) were significantly associated with BC risk after multiple testing. These SNPs were then used to create the PRS model. Compared with women in the lowest quartile, women in the highest quartile of PRS had a considerably higher risk (odds ratio 2.65; 95% confidence interval (95% CI) 1.61–4.40) with AUC at 71%. These findings suggest that the 7-SNP PRS would effectively distinguish between women with high and low risk of BC, indicating the genetic marker for BC risk prediction in a Vietnamese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Allman, R., Dite, G.S., Hopper, J.L., et al., SNPs and breast cancer risk prediction for African American and Hispanic women, Breast Cancer Res. Treat., 2015, vol. 154, no. 3, pp. 583–589. https://doi.org/10.1007/s10549-015-3641-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bastami, M., Choupani, J., Saadatian, Z., et al., Evidences from a systematic review and meta-analysis unveil the role of miRNA polymorphisms in the predisposition to female neoplasms, Int. J. Mol. Sci., 2019, vol. 20, no. 20, art. ID 5088. https://doi.org/10.3390/ijms20205088

    Article  CAS  PubMed Central  Google Scholar 

  3. Black, M.H., Li, S., LaDuca, H., et al., Polygenic risk score for breast cancer in high-risk women, J. Clin. Oncol., 2018, vol. 36, pp. 1508-1508. https://doi.org/10.1200/JCO.2018.36.15_suppl.1508

    Article  Google Scholar 

  4. Bradbury, A.R. and Olopade, O.I., Genetic susceptibility to breast cancer, Rev. Endocr. Metab. Disord., 2007, vol. 8, no. 3, pp. 255–267. https://doi.org/10.1007/s11154-007-9038-0

    Article  PubMed  Google Scholar 

  5. Cai, Q., Long, J., Lu, W., et al., Genome-wide association study identifies breast cancer risk variant at 10q21. 2: results from the Asia Breast Cancer Consortium, Hum. Mol. Genet., 2011, vol. 20, no. 24, pp. 4991–4999. https://doi.org/10.1093/hmg/ddr405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai, Q., Zhang, B., Sung, H., et al., Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1, Nature Genetics, 2014, vol. 46, no. 8, pp. 886–890. https://doi.org/10.1038/ng.3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campa, D., Kaaks, R., Le Marchand, L., et al., Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium, J. Natl. Cancer Inst., 2011, vol. 103, no. 16, pp. 1252–1263. https://doi.org/10.1093/jnci/djr265

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chan, C.H.T., Munusamy, P., Loke, S.Y., et al., Evaluation of three polygenic risk score models for the prediction of breast cancer risk in Singapore Chinese, Oncotarget, 2018, vol. 9, no. 16, pp. 12796–12804. https://doi.org/10.18632/oncotarget.24374

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, Q.H., Wang, Q.B., and Zhang, B., Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: a HuGE meta-analysis, Tumor Biol., 2014, vol. 35, no. 1, pp. 529–543. https://doi.org/10.1007/s13277-013-1074-7

    Article  CAS  Google Scholar 

  10. Chen, Y., Fu, F., Lin, Y., et al., The precision relationships between eight GWAS-identified genetic variants and breast cancer in a Chinese population, Oncotarget, 2016, vol. 7, no. 46, art. ID 75457. https://doi.org/10.18632/oncotarget.12255

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y., Shi, C., and Guo, Q., TNRC9 rs12443621 and FGFR2 rs2981582 polymorphisms and breast cancer risk, World J. Surg. Oncol., 2016, vol. 14, no. 1, art. ID 50. https://doi.org/10.1186/s12957-016-0795-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choupani, J., Nariman-Saleh-Fam, Z., Saadatian, Z., et al., Association of mir-196a-2 rs11614913 and mir-149 rs2292832 polymorphisms with risk of cancer: an updated meta-analysis, Front. Genet., 2019, vol. 10, art. ID 186. https://doi.org/10.3389/fgene.2019.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Couch, F.J., Kuchenbaecker, K.B., Michailidou, K., et al., Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer, Nat. Commun., 2016, vol. 7, no. 1, art. ID 11375. https://doi.org/10.1038/ncomms11375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dai, Z.J., Shao, Y.P., Wang, X.J., et al., Five common functional polymorphisms in microRNAs (rs2910164, rs2292832, rs11614913, rs3746444, rs895819) and the susceptibility to breast cancer: evidence from 8361 cancer cases and 8504 controls, Curr. Pharm. Des., 2015, vol. 21, no. 11, pp. 1455–1463. https://doi.org/10.2174/1381612821666141208143533

    Article  CAS  PubMed  Google Scholar 

  15. Dai, Z.M., Kang, H.F., Zhang, W.G., et al., The Associations of Single Nucleotide Polymorphisms in miR196a2, miR-499, and miR-608 with breast cancer susceptibility: A STROBE-compliant observational study, Medicine (Baltimore), 2016, vol. 95, no. 7, art. ID e2826. https://doi.org/10.1097/MD.0000000000002826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darabi, H., Czene, K., Zhao, W., et al., Breast cancer risk prediction and individualised screening based on common genetic variation and breast density measurement, Breast Cancer Res., 2012, vol. 14, no. 1, art. ID R25. https://doi.org/10.1186/bcr3110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dinger, M.E., Amaral, P.P., Mercer, T.R., et al., Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation, Genome Res., 2008, vol. 18, no. 9, pp. 1433–1445. https://doi.org/10.1101/gr.078378.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dite, G.S., MacInnis, R.J., Bickerstaffe, A., et al., Breast cancer risk prediction using clinical models and 77 independent risk-associated SNPs for women aged under 50 years: australian breast cancer family registry, Cancer Epidemiol. Biomarkers Prev., 2016, vol. 25, no. 2, pp. 359–365. https://doi.org/10.1158/1055-9965.Epi-15-0838

    Article  PubMed  Google Scholar 

  19. Dite, G.S., Mahmoodi, M., Bickerstaffe, A., et al., Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model, Breast Cancer Res. Treat., 2013, vol. 139, no. 3, pp. 887–896. https://doi.org/10.1007/s10549-013-2610-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Easton, D.F., Pooley, K.A., Dunning, A.M., et al., Genome-wide association study identifies novel breast cancer susceptibility loci, Nature, 2007, vol. 447, no. 7148, pp. 1087–1093. https://doi.org/10.1038/nature05887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans, D.G., Brentnall, A., Byers, H., et al., The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: a case–control study, J. Med. Genet., 2017, vol. 54, no. 2, art. ID 111113. https://doi.org/10.1136/jmedgenet-2016-104125

    Article  CAS  Google Scholar 

  22. Fernandes, G.C., Michelli, R.A., Scapulatempo-Neto, C., et al., Association of polymorphisms with a family history of cancer and the presence of germline mutations in the BRCA1/BRCA2 genes, Hered. Cancer Clin. Pract., 2016, vol. 14, no. 1, art.ID. 2. https://doi.org/10.1186/s13053-015-0042-1

  23. Fernandez-Navarro, P., Pita, G., Santamarina, C., et al., Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene, Eur. J. Cancer, 2013, vol. 49, no. 2, pp. 474–481. https://doi.org/10.1016/j.ejca.2012.08.026

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher, O., Johnson, N., Orr, N., et al., Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study, J. Natl. Cancer Inst., 2011, vol. 103, no. 5, pp. 425–435. https://doi.org/10.1093/jnci/djq563

    Article  CAS  PubMed  Google Scholar 

  25. Fogarty, M.P., Emmenegger, B.A., Grasfeder, L.L., et al., Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells, Proc. Natl. Acad. Sci., 2007, vol. 104, no. 8, pp. 2973–2978. https://doi.org/10.1073/pnas.0605770104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gapska, P., Scott, R.J., Serrano-Fernandez, P., et al., Vitamin D receptor variants and breast cancer risk in the Polish population, Breast Cancer Res. Treat., 2009, vol. 115, no. 3, pp. 629–633. https://doi.org/10.1007/s10549-008-0107-1

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh, J.C., Dohi, T., Kang, B.H., et al., Hsp60 regulation of tumor cell apoptosis, J. Biol. Chem., 2008, vol. 283, no. 8, pp. 5188–5194. https://doi.org/10.1074/jbc.M705904200

    Article  CAS  PubMed  Google Scholar 

  28. Gibb, E.A., Brown, C.J., and Lam, W.L., The functional role of long non-coding RNA in human carcinomas, Mol. Cancer, 2011, vol. 10, no. 1, art. ID 38. https://doi.org/10.1186/1476-4598-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glubb, D.M., Maranian, M.J., Michailidou, K., et al., Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1, Am. J. Hum. Genet., 2015, vol. 96, no. 1, pp. 5–20. https://doi.org/10.1016/j.ajhg.2014.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gold, B., Kirchhoff, T., Stefanov, S., et al., Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33, Proc. Natl. Acad. Sci., 2008, vol. 105, no. 11, pp. 4340–4345. https://doi.org/10.1073/pnas.0800441105

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guttman, M., Amit, I., Garber, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals, Nature, 2009, vol. 458, no. 7235, pp. 223–227. https://doi.org/10.1038/nature07672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haiman, C.A., Chen, G.K., Vachon, C.M., et al., A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer, Nat. Genet., 2011, vol. 43, no. 12, pp. 1210–1214. https://doi.org/10.1038/ng.985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han, M.-R., Long, J., Choi, J.-Y., et al., Genome-wide association study in East Asians identifies two novel breast cancer susceptibility loci, 2016, Hum. Mol. Genet., vol. 25, no. 15, pp. 3361-3371. https://doi.org/10.1093/hmg/ddw164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, M.R., Deming-Halverson, S., Cai, Q., et al., Evaluating 17 breast cancer susceptibility loci in the Nashville breast health study, Breast Cancer, 2015, vol. 22, no. 5, pp. 544–551. https://doi.org/10.1007/s12282-014-0518-2

    Article  PubMed  Google Scholar 

  35. Harrison, R.E., Sikorski, B.A., and Jongstra, J., Leukocyte-specific protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1 and ERK2 to the actin cytoskeleton, J. Cell Sci., 2004, vol. 117, no. 10, pp. 2151–2157.https://doi.org/10.1242/jcs.00955

    Article  CAS  PubMed  Google Scholar 

  36. Hein, A., Rack, B., Li, L., et al., Genetic breast cancer susceptibility variants and prognosis in the prospectively randomized SUCCESS a study, Geburtshilfe Frauenheilk., 2017, vol. 77, no. 6, pp. 651–659. https://doi.org/10.1055/s-0042-113189

    Article  CAS  Google Scholar 

  37. Hill, K., The demography of menopause, Maturitas, 1996, vol. 23, no. 2, pp. 113–127. https://doi.org/10.1016/0378-5122(95)00968-x

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh, Y.C., Tu, S.H., Su, C.T., et al., A polygenic risk score for breast cancer risk in a Taiwanese population, Breast Cancer Res. Treat., 2017, vol. 163, no. 1, pp. 131–138. https://doi.org/10.1007/s10549-017-4144-5

    Article  CAS  PubMed  Google Scholar 

  39. Huarte, M. and Rinn, J.L., Large non-coding RNAs: missing links in cancer?, Hum. Mol. Genet., 2010, vol. 19, no. R2, pp. R152–R161. https://doi.org/10.1093/hmg/ddq353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hughes, E., Judkins, T., Wagner, S., et al., Development and validation of a residual risk score to predict breast cancer risk in unaffected women negative for mutations on a multi-gene hereditary cancer panel, J. Clin. Oncol., 2017, vol. 35, pp. 1579–1579. https://doi.org/10.1200/JCO.2017.35.15_suppl.1579

    Article  Google Scholar 

  41. Hunter, D.J., Kraft, P., Jacobs, K.B., et al., A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer, Nat. Genet., 2007, vol. 39, no. 7, pp. 870–874. https://doi.org/10.1038/ng2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, H.-C., Lee, J.-Y., Sung, H., et al., A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study, Breast Cancer Res., 2012, vol. 14, no. 2, art. ID R 56. https://doi.org/10.1186/bcr3158

  43. Kuchenbaecker, K.B., McGuffog, L., Barrowdale, D., et al., Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers, J. Natl. Cancer Inst., 2017, vol. 109, no. 7. https://doi.org/10.1093/jnci/djw302

  44. Lakeman, I.M.M., Hilbers, F.S., Rodríguez-Girondo, M., et al., Addition of a 161-SNP polygenic risk score to family history-based risk prediction: impact on clinical management in non-BRCA1/2 breast cancer families, J. Med. Genet., 2019, vol. 56, no. 9, pp. 581–589. https://doi.org/10.1136/jmedgenet-2019-106072

    Article  CAS  PubMed  Google Scholar 

  45. Li, H., Feng, B., Miron, A., et al., Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab, Genet. Med., 2017, vol. 19, no. 1, pp. 30–35. https://doi.org/10.1038/gim.2016.43

    Article  CAS  PubMed  Google Scholar 

  46. Li, N., Zhou, P., Zheng, J., et al., A polymorphism rs12325489C>T in the LincRNA-ENST00000515084 exon was found to modulate breast cancer risk via GWAS-based association analyses, PLoS One, 2014, vol. 9, no. 5, art. ID e98251. https://doi.org/10.1371/journal.pone.0098251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin, Y., Fu, F., Chen, M., et al., Associations of two common genetic variants with breast cancer risk in a Chinese population: a stratified interaction analysis, PLoS One, 2014, vol. 9, no. 12, pp. 1–12. https://doi.org/10.1371/journal.pone.0115707

    Article  CAS  Google Scholar 

  48. Lindström, S., Thompson, D.J., Paterson, A.D., et al., Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk, Nat. Commun., 2014, vol. 5, no. 1, art. ID 5303. https://doi.org/10.1038/ncomms6303

    Article  CAS  PubMed  Google Scholar 

  49. Lobrich, M. and Jeggo, P., The impact of a negligent G2/M checkpoint on genomic instability cancer induction, Nat. Rev. Cancer, 2007, vol. 7, no. 11, pp. 861–869. https://doi.org/10.1038/nrc2248

    Article  CAS  PubMed  Google Scholar 

  50. Long, J., Shu, X.O., Cai, Q., et al., Evaluation of breast cancer susceptibility loci in Chinese women, Cancer Epidemiol., Biomarkers Prev., 2010, vol. 19, no. 9, pp. 2357–2365. https://doi.org/10.1158/1055-9965.EPI-10-0054

    Article  CAS  Google Scholar 

  51. Ma, L., Teruya-Feldstein, J., and Weinberg, R.A., Tumour invasion and metastasis initiated by microRNA-10b in breast cancer, Nature, 2007, vol. 449, no. 7163, pp. 682–688. https://doi.org/10.1038/nature06174

    Article  CAS  PubMed  Google Scholar 

  52. MacLachlan, T.K., Sang, N., and Giordano, A., Cyclins, cyclin-dependent kinases and Cdk inhibitors: implications in cell cycle control and cancer, Crit. Rev. Eukaryotic Gene Expression, 1995, vol. 5, no. 2, pp. 127–156. https://doi.org/10.1615/critreveukargeneexpr.v5.i2.20

    Article  CAS  Google Scholar 

  53. Mavaddat, N., Pharoah, P.D., Michailidou, K., et al., Prediction of breast cancer risk based on profiling with common genetic variants, J. Natl. Cancer Inst., 2015, vol. 107, no. 5, art. ID djv036. https://doi.org/10.1093/jnci/djv036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mealiffe, M.E., Stokowski, R.P., Rhees, B.K., et al., Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information, J. Natl. Cancer Inst., 2010, vol. 102, no. 21, pp. 1618–1627. https://doi.org/10.1093/jnci/djq388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Michailidou, K., Beesley, J., Lindstrom, S., et al., Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer, Nat. Genet., 2015, vol. 47, no. 4, pp. 373–380. https://doi.org/10.1038/ng.3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Möller, S., Mucci, L.A., Harris, J.R., et al., The heritability of breast cancer among women in the nordic twin study of cancer, Cancer Epidemiol. Prev. Biomarkers, 2016, vol. 25, no. 1, pp. 145–150. https://doi.org/10.1158/1055-9965.EPI-15-0913

    Article  Google Scholar 

  57. Mu, K., Wu, Z.Z., Yu, J.P., et al., Meta-analysis of the association between three microRNA polymorphisms and breast cancer susceptibility, Oncotarget, 2017, vol. 8, no. 40, pp. 68809–68824. https://doi.org/10.18632/oncotarget.18516

    Article  PubMed  PubMed Central  Google Scholar 

  58. Muranen, T.A., Mavaddat, N., Khan, S., et al., Polygenic risk score is associated with increased disease risk in 52 Finnish breast cancer families, Breast Cancer Res. Treat., 2016, vol. 158, no. 3, pp. 463–469. https://doi.org/10.1007/s10549-016-3897-6

    Article  PubMed  PubMed Central  Google Scholar 

  59. Na, Li., Ping, Zhou., Jian, Zheng., et al., A polymorphism rs12325489C>T in the LincRNA-ENST00000515084 exon was found to modulate breast cancer risk via GWAS-based association analyses, PLoS One, 2014, vol. 9, no. 5, pp. e98251–e98251. https://doi.org/10.1371/journal.pone.0098251

    Article  CAS  Google Scholar 

  60. Orr, N., Dudbridge, F., Dryden, N., et al., Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2, Hum. Mol. Genet., 2015, vol. 24, no. 10, pp. 2966–2984. https://doi.org/10.1093/hmg/ddv035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Özgöz, A., İçduygu, F.M., Yükseltürk, A., et al., Low-penetrance susceptibility variants and postmenopausal oestrogen receptor positive breast cancer, J. Genet., 2020, vol. 99, no. 1, art. ID 15. https://doi.org/10.1007/s12041-019-1174-2

    Article  CAS  PubMed  Google Scholar 

  62. Pace, A., Barone, G., Lauria, A., et al., Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design, Curr. Pharm. Des., 2013, vol. 19, no. 15, pp. 2757–2764. https://doi.org/10.2174/1381612811319150011

    Article  CAS  PubMed  Google Scholar 

  63. Peto, J., Collins, N., Barfoot, R., et al., Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer, J. Natl. Cancer Inst., 1999, vol. 91, no. 11, pp. 943–949. https://doi.org/10.1093/jnci/91.11.943

    Article  CAS  PubMed  Google Scholar 

  64. Pharoah, P.D., Dunning, A.M., Ponder, B.A., et al., Association studies for finding cancer-susceptibility genetic variants, Nat. Rev. Cancer, 2004, vol. 4, no. 11, pp. 850–860. https://doi.org/10.1038/nrc1476

    Article  CAS  PubMed  Google Scholar 

  65. Qi, P., Wang, L., Zhou, B., et al., Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population, Genet. Mol. Res., 2015, vol. 14, no. 2, pp. 6289–6296. https://doi.org/10.4238/2015.June.11.2

    Article  CAS  PubMed  Google Scholar 

  66. Qian, B., Zheng, H., Yu, H., et al., Genotypes and phenotypes of IGF-I and IGFBP-3 in breast tumors among Chinese women, Breast Cancer Res. Treat., 2011, vol. 130, no. 1, pp. 217–226. https://doi.org/10.1007/s10549-011-1552-9

    Article  CAS  PubMed  Google Scholar 

  67. Ricol, D., Cappellen, D., El Marjou, A., et al., Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer, Oncogene, 1999, vol. 18, no. 51, pp. 7234–7243. https://doi.org/10.1038/sj.onc.1203186

    Article  CAS  PubMed  Google Scholar 

  68. Safari, S., Baratloo, A., Elfil, M., et al., Evidence based emergency medicine; part 5 receiver operating curve and area under the curve, Emergency (Tehran, Iran), 2016, vol. 4, no. 2, pp. 111–113. https://doi.org/10.22037/aaem.v4i2.232

    Article  Google Scholar 

  69. Sawyer, S., Mitchell, G., McKinley, J., et al., A role for common genomic variants in the assessment of familial breast cancer, J. Clin. Oncol., 2012, vol. 30, no. 35, pp. 4330–4336. https://doi.org/10.1200/JCO.2012.41.7469

    Article  PubMed  Google Scholar 

  70. Schwartz, M.D., Isaacs, C., Graves, K.D., et al., Long-term outcomes of BRCA1/BRCA2 testing: risk reduction and surveillance, Cancer, 2012, vol. 118, no. 2, pp. 510–517. https://doi.org/10.1002/cncr.26294

    Article  PubMed  Google Scholar 

  71. Shan, J., Dsouza, S.P., Bakhru, S., et al., TNRC9 downregulates BRCA1 expression and promotes breast cancer aggressiveness, Cancer Res., 2013, vol. 73, no. 9, pp. 2840–2849. https://doi.org/10.1158/0008-5472.CAN-12-4313

    Article  CAS  PubMed  Google Scholar 

  72. Shan, J., Mahfoudh, W., Dsouza, S.P., et al., Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians, Breast Cancer Res. Treat., 2012, vol. 135, no. 3, pp. 715–724. https://doi.org/10.1007/s10549-012-2202-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi, J., Zhang, Y., Zheng, W., et al., Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer, Int. J. Cancer, 2016, vol. 139, no. 6, pp. 1303–1317. https://doi.org/10.1002/ijc.30150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shieh, Y., Hu, D., Ma, L., et al., Breast cancer risk prediction using a clinical risk model and polygenic risk score, Breast Cancer Res. Treat., 2016, vol. 159, no. 3, pp. 513–525. https://doi.org/10.1007/s10549-016-3953-2

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shieh, Y., Hu, D., Ma, L., et al., Joint relative risks for estrogen receptor-positive breast cancer from a clinical model, polygenic risk score, and sex hormones, Breast Cancer Res. Treat., 2017, vol. 166, no. 2, pp. 603–612. https://doi.org/10.1007/s10549-017-4430-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stacey, S.N., Manolescu, A., Sulem, P., et al., Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer, Nat. Genet., 2007, vol. 39, no. 7, pp. 865–869. https://doi.org/10.1038/ng2064

    Article  CAS  PubMed  Google Scholar 

  77. Stacey, S.N., Manolescu, A., Sulem, P., et al., Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer, Nat. Genet., 2008, vol. 40, no. 6, pp. 703–706. https://doi.org/10.1038/ng.131

    Article  CAS  PubMed  Google Scholar 

  78. Starlard-Davenport, A., Allman, R., Dite, G.S., et al., Validation of a genetic risk score for Arkansas women of color, PLoS One, 2018, vol. 13, no. 10, art. ID e0204834. https://doi.org/10.1371/journal.pone.0204834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tajbakhsh, A., Farjami, Z., Darroudi, S., et al., Association of rs4784227-CASC16 (LOC643714 locus) and rs4782447-ACSF3 polymorphisms and their association with breast cancer risk among Iranian population, EXCLI J., 2019, vol. 18, pp. 429–438. https://doi.org/10.17179/excli2019-1374

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tan, T., Zhang, K., Chen, W., Genetic variants of ESR1 and SGSM3 are associated with the susceptibility of breast cancer in the Chinese population, Breast Cancer, 2017, vol. 24, no. 3, pp. 369–374. https://doi.org/10.1007/s12282-016-0712-5

    Article  PubMed  Google Scholar 

  81. Turnbull, C., Ahmed, S., Morrison, J., et al., Genome-wide association study identifies five new breast cancer susceptibility loci, Nat. Genet., 2010, vol. 42, no. 6, pp. 504–507. https://doi.org/10.1038/ng.586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vachon, C.M., Pankratz, V.S., Scott, C.G., et al., The contributions of breast density and common genetic variation to breast cancer risk, J. Natl. Cancer Inst., 2015, vol. 107, no. 5, art. ID dju397. https://doi.org/10.1093/jnci/dju397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wacholder, S., Hartge, P., Prentice, R., et al., Performance of common genetic variants in breast-cancer risk models, N. Engl. J. Med., 2010, vol. 362, no. 11, pp. 986–993. https://doi.org/10.1056/NEJMoa0907727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, J., Wang, Q., Liu, H., et al., The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies, Mutagenesis, 2012, vol. 27, no. 6, pp. 779–788. https://doi.org/10.1093/mutage/ges052

    Article  CAS  PubMed  Google Scholar 

  85. Wang, P.Y., Gao, Z.H., Jiang, Z.H., et al., The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility, PLoS One, 2013, vol. 8, no. 9, art. ID e70656. https://doi.org/10.1371/journal.pone.0070656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wen, W., Shu, X.O., Guo, X., et al., Prediction of breast cancer risk based on common genetic variants in women of East Asian ancestry, Breast Cancer Res., 2016, vol. 18, no. 1, art. ID 124. https://doi.org/10.1186/s13058-016-0786-1

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wu, Z., Wang, P., Song, C., et al., Evaluation of miRNA-binding-site SNPs of MRE11A, NBS1, RAD51 and RAD52 involved in HRR pathway genes and risk of breast cancer in China, Mol. Genet. Genomics, 2015, vol. 290, no. 3, pp. 1141–1153. https://doi.org/10.1007/s00438-014-0983-5

    Article  CAS  PubMed  Google Scholar 

  88. Xu, M., Xu, Y., Chen, M., et al., Association study confirms two susceptibility loci for breast cancer in Chinese Han women, Breast Cancer Res. Treat., 2016, vol. 159, no. 3, pp. 433–442. https://doi.org/10.1007/s10549-016-3952-3

    Article  PubMed  Google Scholar 

  89. Xu, W., Xu, J., Liu, S., et al., Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis, PLoS One, 2011, vol. 6, no. 5, art. ID e20471. https://doi.org/10.1371/journal.pone.0020471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, K., Xu, J., Liu, Z., et al., Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth, Development, 2003, vol. 130, no. 13, pp. 3063–3074. https://doi.org/10.1242/dev.00491

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, H., Zhang, Y., Yan, W., et al., Association between three functional microRNA polymorphisms (miR-499 rs3746444, miR-196a rs11614913 and miR-146a rs2910164) and breast cancer risk: a meta-analysis, Oncotarget, 2017, vol. 8, no. 1, pp. 393–407. https://doi.org/10.18632/oncotarget.13426

    Article  PubMed  Google Scholar 

  92. Zhang, Y., Zeng, X., Liu, P., et al., Association between FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphism and breast cancer susceptibility: a meta-analysis, Oncotarget, 2017, vol. 8, no. 2, pp. 3454–3470. https://doi.org/10.18632/oncotarget.13839

    Article  PubMed  Google Scholar 

  93. Zheng, W., Wen, W., Gao, Y.-T., et al., Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women, J. Natl. Cancer Inst., 2010, vol. 102, no. 13, pp. 972–981. https://doi.org/10.1093/jnci/djq170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng, Y., Ogundiran, T.O., Falusi, A.G., et al., Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers, Carcinogenesis, 2013, vol. 34, no. 7, pp. 1520–1528. https://doi.org/10.1093/carcin/bgt090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu, R.M., Lin, W., Zhang, W., et al., Modification effects of genetic polymorphisms in FTO, IL-6, and HSPD1 on the associations of diabetes with breast cancer risk and survival, PLoS One, 2017, vol. 12, no. 6, art. ID e0178850. https://doi.org/10.1371/journal.pone.0178850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuo, X., Wang, H., Mi, Y., et al., The association of CASC16 variants with breast Cancer risk in a northwest Chinese female population, Mol. Med., 2020, vol. 26, no. 1, pp. 1–10. https://doi.org/10.1186/s10020-020-0137-7

    Article  CAS  Google Scholar 

Download references

FUNDING

This research is funded by University of Science, VNU-HCM under grant number T2021-50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Thi Ngoc Nguyen.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. During research enrollment, participants signed informed consent. The Ethical Committee approved this study of Oncology Hospital Ho Chi Minh City (no. 177/ÐÐÐ-CÐT November 18th, 2014).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh Thi Ngoc Nguyen, Nguyen, T.H., Phan, H.N. et al. Seven-Single Nucleotide Polymorphism Polygenic Risk Score for Breast Cancer Risk Prediction in a Vietnamese Population. Cytol. Genet. 56, 379–390 (2022). https://doi.org/10.3103/S0095452722040065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722040065

Keywords:

Navigation