Skip to main content
Log in

Cellular Biological and Molecular Genetic Effects of Carbon Nanomaterials in Plants

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Current research data on the biological effects of carbon nanoparticles (CNMs), such as C60 fullerene, graphene, graphene oxide, and single- and multiwalled nanotubes, in in vitro and in vivo plant systems are summarized. The interaction of CNMs with plant cells or organisms, their intracellular localization, and potential mechanisms of action were analyzed. It was found that CNMs improve seed germination, root growth and shoots, and increase the biomass of different species of monocotyledonous and dicotyledonous plants. The negative effect of CNMs on plant growth and development was observed only at high concentrations, depending on the type of CNMs and the peculiarities of exposure conditions. Due to their nanoscale and hydrophobic properties, CNMs are able to penetrate plant cells in both energy-dependent and energy-independent ways, accumulating mainly in plastids, vacuoles, and nuclei, which determines the protective and target action of CNMs. The protective mechanisms of CNMs are based on the antioxidant properties of carbon molecules and are accompanied by changes in the expression of genes that are responsible, in particular, for cellular processes, metabolic processes, and the response to abiotic factors. The positive effect of CNMs on plant productivity, resistance to oxidative stress, their high efficiency at low concentrations, and environmental safety indicate the prospect of their use as regulators of physiological conditions, growth, and development of higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albanese, A., Tang, P.S., and Chan, W.C., The effect of nanoparticle size, shape, and surface chemistry on biological systems, Ann. Rev. Biomed. Eng., 2012, vol. 14, pp. 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124

    Article  CAS  Google Scholar 

  2. Ali-Boucetta, H., Al-Jamal, K.T., Müller, K.H., et al., Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes, Small, 2011, vol. 7, no. 22, pp. 3230–3238. https://doi.org/10.1002/smll.201101004

    Article  CAS  PubMed  Google Scholar 

  3. Anjum, N.A., Singh, N., Singh, M.K., et al., Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.), Sci. Total Environ., 2014, vol. 472, pp. 834–841. https://doi.org/10.1016/j.scitotenv.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  4. Avanasi, R., Jackson, W.A., Sherwin, B., et al., C60 fullerene soil sorption, biodegradation, and plant uptake, Environ. Sci. Technol., 2014, vol. 48, pp. 2792–2797. https://doi.org/10.1021/es405306w

    Article  CAS  PubMed  Google Scholar 

  5. Begum, P. and Fugetsu, B., Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant, J. Hazard. Mater., 2012, vol. 243, pp. 212–222. https://doi.org/10.1016/j.jhazmat.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  6. Begum, P., Ikhtiari, R., Fugetsu, B., et al., Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage, Appl. Surf. Sci., 2012, vol. 262, pp. 120–124. https://doi.org/10.1016/j.apsusc.2012.03.028

    Article  CAS  Google Scholar 

  7. Bianco, A., Kostarelos, K., and Prato, M., Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol., 2005, vol. 9, no. 6, pp. 674–679. https://doi.org/10.1016/j.cbpa.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Blume, Y.B., Krasylenko, Y.A., and Yemets, A.I., Effects of phytohormones on the cytoskeleton of the plant cell, Rus. J., Plant Physiol., 2012, vol. 59, no. 4, 515–529. https://doi.org/10.1134/S1021443712040036

    Article  CAS  Google Scholar 

  9. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., et al., Application of carbon nanotubes for plant genetic transformation, in Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, vol. 156: Springer Proceedings in Physics, Fesenko, O. and Yatsenko L., Eds., Springer-Verlag, 2015, Chapter 20, p. 233–255. https://doi.org/10.1007/978-3-319-06611-0_20

  10. Burlaka, O.M., Yemets, A.I., Pirko, Ya.V., et al., Non-covalent functionalization of carbon nanotubes for efficient gene delivery, in Nanophysics, Nanophotonics, Surface Studies, and Applications vol. 183: Springer Proceedings in Physics, Fesenko, O. and Yatsenko L., Eds., Springer-Verlag, 2016, Chapter 30, p. 355–370. https://doi.org/10.1007/978-3-319-30737-4_30

  11. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Carbon nanotubes and their application for plant genetic engineering, Nanostruct. Mater. Sci., 2011, vol. 2, pp. 84–101. http://dspace.nbuv.gov.ua/handle/123456789/62783.

    Google Scholar 

  12. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Gene material delivering into plant cells using carbon nanotubes, Dopov. Nac. Akad. Nauk Ukr., 2015a, vol. 8, pp. 122–130. https://doi.org/10.15407/dopovidi2015.08.122

    Article  Google Scholar 

  13. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Investigation of the effect of carbon nanotubes on tobacco protoplasts for the development of novel approaches in plant biotechnology, Factory Exp. Evol. Org., 2015b, vol. 17, pp. 121–125. http://utgis.org.ua/journals/index.php/ Faktory/article/view/486.

    Google Scholar 

  14. Buzaneva, E., Karlash, A., Yakovkin, K., et al., DNA nanotechnology of carbon nanotube cells: physico-chemical models of self-organization and properties, Mater. Sci. Engineer., 2002, vol. 19, nos. 1–2, pp. 41–45. https://doi.org/10.1016/S0928-4931(01)00425-8

    Article  Google Scholar 

  15. Byon, H.R., and Choi, H.C., Network single-walled carbon nanotube-field effect transistors (SWNT FETs) with increased Schottky contact area for highly sensitive biosensor applications, J. Am. Chem. Soc., 2006, vol. 128, pp. 2188–2189. https://doi.org/10.1021/ja056897n

    Article  CAS  PubMed  Google Scholar 

  16. Cañas, J.E., Long, M., Nations, S., et al., Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1922–1931. https://doi.org/10.1897/08-117.1

    Article  PubMed  Google Scholar 

  17. Cecchini, N.M., Monteoliva, M.I., and Alvarez, M.E., Proline dehydrogenase contributes to pathogen defense in Arabidopsis, Plant. Physiol., 2011, vol. 155, no. 4, pp. 1947–1959. https://doi.org/10.1104/pp.110.167163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cherukuri, P., Bachilo, S.M., Litovsky, S.H., et al., Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells, J. Am. Chem. Soc., 2004, vol. 126, no. 48, pp. 15638–15639. https://doi.org/10.1021/ja0466311

    Article  CAS  PubMed  Google Scholar 

  19. Cherukuri, P., Gannon, C.J., Leeuw, T.K., et al., Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 18882–18886. https://doi.org/10.1073/pnas.0609265103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chithrani, B.D., Ghazani, A.A., and Chan, W.C.W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 2006, vol. 6, no. 4, pp. 662–668.https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  21. Cui, D., Zhang, H., Sheng, J., et al., Effects of CdSe/ZnS quantum dots covered multi-walled carbon nanotubes on murine embryonic stem cells, Nano Biomed. Eng., 2010, vol. 2, pp. 236–244. https://doi.org/10.5101/NBE.V214.P236-244

    Article  CAS  Google Scholar 

  22. De La Torre-Roche, R., Hawthorne, J., Deng, Y., et al., Fullerene-enhanced accumulation of p,p'-DDE in agricultural crop species, Environ. Sci. Technol., 2012, vol. 46, no. 17, pp. 9315–9323. https://doi.org/10.1021/es301982w

    Article  CAS  PubMed  Google Scholar 

  23. Galbraith, D.W., Nanobiotechnology: silica breaks through in plants, Nat. Nanotechnol., 2007, vol. 2, pp. 272–273. https://doi.org/10.1038/nnano.2007.118

    Article  CAS  PubMed  Google Scholar 

  24. Gao, J., Wang, Y., Folta, K.M., et al., Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models, PLoS One, 2011, vol. 6, no. 5, art. ID e19976. https://doi.org/10.1371/journal.pone.0019976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghorbanpour, M. and Hadian, J., Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro, Carbon, 2015, vol. 94, pp. 749–759. https://doi.org/10.1016/j.carbon.2015.07.056

    Article  CAS  Google Scholar 

  26. Ghosh, M., Chakraborty, A., Bandyopadhyay, M., et al., Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells, J. Hazard. Mater., 2011, vol. 197, pp. 327–336. https://doi.org/10.1016/j.jhazmat.2011.09.090

    Article  CAS  PubMed  Google Scholar 

  27. Giraldo, J.P., Landry, M.P., Faltermeier, S.M., et al., Plant nanobionics approach to augment photosynthesis and biochemical sensing, Nat. Mater., 2014, vol. 13, pp. 400–408. https://doi.org/10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  28. Gogos, A., Knauer, K., and Bucheli, T.D., Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities, J. Agric. Food Chem., 2012, vol. 60, pp. 9781–9792. https://doi.org/10.1021/jf302154y

    Article  CAS  PubMed  Google Scholar 

  29. Grebinyk, A., Prylutska, S., Buchelnikov, A., et al., C60 fullerene as effective nanoplatform of alkaloid berberine delivery into leukemic cells, Pharmaceutics, 2019, vol. 11, no. 11, art. ID 586. https://doi.org/10.3390/pharmaceutics11110586

    Article  CAS  PubMed Central  Google Scholar 

  30. Grebinyk, A., Prylutska, S., Grebinyk, S., et al., Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo, Cancer Nanotechnol., 2021, vol. 12, art. ID 24. https://doi.org/10.1186/s12645-021-00096-6

    Article  CAS  Google Scholar 

  31. Hamdi, H., De La Torre-Roche, R., et al., Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.), Nanotoxicology, 2014, vol. 9, no. 2. https://doi.org/10.3109/17435390.2014.907456

  32. Hao, Y., Yu, F., Lv, R., et al., Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C:N ratio and plant hormones concentrations, PloS One, 2016, vol. 11. https://doi.org/10.1371/journal.pone.0157264

  33. Heller, D.A., Baik, S., Eurell, T.E., et al., Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors, Adv. Mater., 2005, vol. 17, no. 23, pp. 2793–2799. https://doi.org/10.1002/ADMA.200500477

    Article  CAS  Google Scholar 

  34. Imlay, J.A., and Linn, S., DNA damage and oxygen radical toxicity, Science (Washington), 1988, vol. 240, pp. 1302–1309. https://doi.org/10.1126/science.3287616

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, Y., Hua, Z., Zhao., Y., et al., The effect of carbon nanotubes on rice seed germination and root growth, Proc. Int. Conf. Appl. Biotechnol., 2014.

  36. Jin, H., Heller, D.A., Sharma, R., et al., Size dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles, ACS Nano, 2009, vol. 3, no. 1, pp. 149–158. https://doi.org/10.1021/nn800532m

    Article  CAS  PubMed  Google Scholar 

  37. Jin, H., Heller, D.A., and Strano, M.S., Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells, Nano Lett., 2008, vol. 8, no. 6, pp. 1577–1585. https://doi.org/10.1021/nl072969s

    Article  PubMed  Google Scholar 

  38. Kelsey, J.W. and White, J.C., Effect of C60 fullerenes on the accumulation of weathered p,p’-DDE by plant and earthworm species under single and multispecies conditions, Environ. Toxicol. Chem., 2013, vol. 32, pp. 1117–1123. https://doi.org/10.1002/etc.2158

    Article  CAS  PubMed  Google Scholar 

  39. Khodakovskaya, M.V., de Silva, K., Biris, A.S., et al., Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 2012, vol. 6, no. 3, pp. 2128–2135. https://doi.org/10.1021/nn204643g

    Article  CAS  PubMed  Google Scholar 

  40. Khodakovskaya, M., de Silva, K., Nedosekin, D., et al., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 1028–1033. https://doi.org/10.1073/pnas.1008856108

    Article  PubMed  Google Scholar 

  41. Khodakovskaya, M., Dervishi, E., Mahmood, M., et al., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 2009, vol. 3, no. 10, pp. 3221–3227. https://doi.org/10.1021/nn900887m

    Article  CAS  PubMed  Google Scholar 

  42. Khodakovskaya, M.V., Kim, B.S., Kim, J.N., et al., Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community, Small, 2013, vol. 9, no, 1, pp. 115–123. https://doi.org/10.1002/smll.201201225

    Article  CAS  PubMed  Google Scholar 

  43. Kim, S.N., Rusling, J.F., and Papadimitrakopoulos, F., Carbon nanotubes for electronic and electrochemical detection of biomolecules, Adv. Mater., 2007, vol. 19, no. 20, pp. 3214–3228. https://doi.org/10.1002/adma.200700665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kole, C., Kole, P., Randunu, K.M., et al., Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia), BMC Biotechnol., 2013, vol. 13, no. 1, art. ID 37. https://doi.org/10.1186/1472-6750-13-37

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kostarelos, K., Lacerda, L., Pastorin, G., et al., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nanotechnol., 2007, vol. 2, pp. 108–113. https://doi.org/10.1038/nnano.2006.209

    Article  CAS  PubMed  Google Scholar 

  46. Lacerda, L., Russier, J., Pastorin, G., et al., (2012) Translocation mechanisms of chemically functionalized carbon nanotubes across plasma membranes Biomaterials 33: 3334–3343. https://doi.org/10.1016/j.biomaterials.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  47. Lahiani, M., Chen, J., Irin, F., et al., Interaction of carbon nanohorns with plants: uptake and biological effects, Carbon, 2015, vol. 81, pp. 607–619. https://doi.org/10.1016/j.carbon.2014.09.095

    Article  CAS  Google Scholar 

  48. Lahiani, M.H., Dervishi, E., Chen, J., et al., Impact of carbon nanotube exposure to seeds of valuable crops, ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 7965–7973. https://doi.org/10.1021/am402052x

    Article  CAS  PubMed  Google Scholar 

  49. Lahiani, M.H., Dervishi, E., Ivanov, I., et al., Comparative study of plant responses to carbon-based nanomaterials with different morphologies, Nanotechnology, 2016, vol. 27, no. 26, art. ID 265102. https://doi.org/10.1088/0957-4484/27/26/265102

    Article  CAS  PubMed  Google Scholar 

  50. Lang, J., Melnykova, M., Catania, M., et al., A water-soluble [60]fullerene-derivative stimulates chlorophyll accumulation and has no toxic effect on Chlamydomonas reinhardtii, Acta Biochim. Pol., 2009, vol. 66, no. 3, pp. 257–262. https://doi.org/10.18388/abp.2019_2835

    Article  CAS  Google Scholar 

  51. Larue, C., Pinault, M., Czarny, B., et al., Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed, J. Hazard. Mater., 2012, vols. 227–228, pp. 155–163. https://doi.org/10.1016/j.jhazmat.2012.05.033

    Article  CAS  PubMed  Google Scholar 

  52. Leeuw, T.K., Reith, R.M., Simonette, R.A., et al., Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila, Nano Lett., 2007, vol. 7, no. 9, pp. 2650–2654. https://doi.org/10.1021/nl0710452

    Article  CAS  PubMed  Google Scholar 

  53. Lin, C., Fugetsu, B., Su, Y., et al., Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells, J. Hazard. Mater., 2009, vol. 170, pp. 578–583. https://doi.org/10.1016/j.jhazmat.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  54. Lin, D. and Xing, B., Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 2007, vol. 150, no. 2, pp. 243–250. https://doi.org/10.1016/j.envpol.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  55. Lin, S., Reppert, J., Hu, Q., et al., Uptake, translocation, and transmission of carbon nanomaterials in rice plants, Small, 2009, vol. 5, no. 10, pp. 1128–1132. https://doi.org/10.1002/smll.200801556

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Q., Chen, B., Wang, Q., et al., Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett., 2009, vol. 9, no. 3, pp. 1007–1010. https://doi.org/10.1021/nl803083u

    Article  CAS  PubMed  Google Scholar 

  57. Molchan, O.V. and Zubei, E.S., The effect of fullerene on the physiological and biochemical parameters of barley plants in hydroponic culture, Proc. Natl. Acad. Sci. Belarus, Biol. Ser., 2021, vol. 66, no. 1, pp. 74–87. https://doi.org/10.29235/1029-8940-2021-66-1-74-87

    Article  Google Scholar 

  58. Nazarenus, M., Zhang, Q., Soliman, M.G., et al., In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?, Beilstein J. Nanotechnol., 2014, vol. 5, pp. 1477–1490. https://doi.org/10.3762/bjnano.5.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nima, Z.A., Lahiani, M.H., Watanabe, F., et al., Plasmonically active nanorods for delivery of bioactive agents and highsensitivity SERS detection in planta, RSC Adv., 2014, vol. 4, no. 110, pp. 64985–64993. https://doi.org/10.1039/C4RA10358K

    Article  CAS  Google Scholar 

  60. Panova, G.G., Kanash, E.V., Semenov, K.N., et al., Fullerene derivatives influence production process, growth and resistance to oxidative stress in barley and wheat plants, Agric. Biol., 2018, vol. 53, no. 1, pp. 38–49. https://doi.org/10.15389/agrobiology.2018.1.38rus

    Article  Google Scholar 

  61. Panova, G.G., Ktitorova, I.N., Skobeleva, O.V., et al., Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions, Plant Growth Regul., 2015, vol. 79, pp. 309–317. https://doi.org/10.1007/s10725-015-0135-x

    Article  CAS  Google Scholar 

  62. Prylutska, S.V., Grynyuk, I.I., Matyshevska, O.P., et al., Estimation of multi-walled carbon nanotubes toxicity in vitro, Physica, 2008, vol. 40, no. 7, pp. 2565–2569. https://doi.org/10.1016/j.physe.2007.07.017

    Article  CAS  Google Scholar 

  63. Prylutska, S.V., Grynyuk, I.I., Palyvoda, K.O., et al., Photoinduced cytotoxic effect of fullerenes C60 on transformed T-lymphocytes, Exp. Oncol., 2010, vol. 32, no. 1, pp. 29–32.

    CAS  PubMed  Google Scholar 

  64. Prylutska, S., Grynyuk, I., Skaterna, T., et al., Toxicity of C60 fullerene–cisplatin nanocomplex against Lewis lung carcinoma cells, Arch. Toxicol., 2019, vol. 93, no. 5, pp. 1213–1226. https://doi.org/10.1007/s00204-019-02441-6

    Article  CAS  PubMed  Google Scholar 

  65. Rico, C., Peralta-Videa, J., and Gardea-Torresdey, J., Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants, Nanotechnol. Plant Sci., 2015, pp. 1–17. https://doi.org/10.1007/978-3-319-14502-0_1

  66. Sakhno, L.O., Yemets, A.I., and Blume, Ya.B., Carbon nanotubes and fullerenes as DNA/RNA carriers for plant genetic transformation, in Research Advances in Plant Biotechnology, Blume, Ya.B., Ed., New York: Nova Sci. Publ., 2020, Chapter 1, pp. 1–31.

    Google Scholar 

  67. Šamaj, J., Baluška, F., Voigt, B., et al., Endocytosis, actin cytoskeleton, and signaling, Plant Physiol., 2004, vol. 135, no. 3, pp. 1150–1161. https://doi.org/10.1104/pp.104.040683

    Article  PubMed  PubMed Central  Google Scholar 

  68. Serag, M.F., Braeckmans, K., Habuchi, S., et al., Spatiotemporal visualization of subcellular dynamics of carbon nanotubes, Nano Lett., 2012, vol. 12, no. 12, pp. 6145–6151. https://doi.org/10.1021/nl3029625

    Article  CAS  PubMed  Google Scholar 

  69. Serag, M.F., Kaji, N., Gaillard, C., et al., Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells, ACS Nano, 2011, vol. 5, no. 1, pp. 493–499. https://doi.org/10.1021/nn102344t

    Article  CAS  PubMed  Google Scholar 

  70. Serag, M.F., Kaji, N., Habuchi, S., et al., Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers, RSC Adv., 2013, vol. 3, no. 15, pp. 4856–4862. https://doi.org/10.1039/c2ra22766e

    Article  CAS  Google Scholar 

  71. Serag, M.F., Kaji, N., Venturelli, E., et al., A functional platform for controlled subcellular distribution of carbon nanotubes, ACS Nano, 2011, vol. 5, no. 1, pp. 9264–9270. https://doi.org/10.1021/nn2035654

    Article  CAS  PubMed  Google Scholar 

  72. Scharff, P., Ritter, U., Matyshevska, O.P., et al., Therapeutic reactive oxygen generation, Tumori, 2008, vol. 94, no. 2, pp. 278–283.

    Article  CAS  Google Scholar 

  73. Sharma, P., Jha, A.B., Dubey, R.S., et al., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, art. ID 217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  74. Shen, C.X., Zhang, Q.F., Li, J., et al., Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes, Am. J. Bot., 2010, vol. 97, pp. 1602–1609. https://doi.org/10.3732/ajb.1000073

    Article  CAS  PubMed  Google Scholar 

  75. Smirnova, E., Gusev, A., Zaytseva, O., et al., Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings, Front. Chem. Sci. Eng., 2012, vol. 6, pp. 132–138. https://doi.org/10.1007/s11705-012-1290-5

    Article  CAS  Google Scholar 

  76. Stampoulis, D., Sinha, S.K., and White, J.C., Assay-dependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol., 2009, vol. 43, no. 24, pp. 9473–9479. https://doi.org/10.1021/es901695c

    Article  CAS  PubMed  Google Scholar 

  77. Sukhodub, L.B., Sukhodub, L.F., Prylutskyy, Yu.I., et al., Composite material based on hydroxyapatite and multi-walled carbon nanotubes filled by iron: Preparation, properties and drug release ability, Mater. Sci. Eng.: C., 2018, vol. 93, pp. 606–614. https://doi.org/10.1016/j.msec.2018.08.019

    Article  CAS  Google Scholar 

  78. Tan, X., Lin, C., and Fugetsu, B., Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells, Carbon, 2009, vol. 47, pp. 3479–3487. https://doi.org/10.1016/j.carbon.2009.08.018

    Article  CAS  Google Scholar 

  79. Torney, F., Trewyn, B.G., Lin, V., et al., Mesoporous silica nanoparticles deliver DNA and chemicals into plants, Nat. Nanotechnol., 2007, vol. 2, pp. 295–300. https://doi.org/10.1038/nnano.2007.108

    Article  CAS  PubMed  Google Scholar 

  80. Upadhyayula, V.K.K., Deng, S., Mitchell, M.C., et al., Application of carbon nanotube technology for removal of contaminants in drinking water: A review, Sci. Total Environ., 2009, vol. 408, no. 1, pp. 1–13. https://doi.org/10.1016/j.scitotenv.2009.09.027

    Article  CAS  PubMed  Google Scholar 

  81. Villagarcia, H., Dervishi, E., de Silva, K., et al., Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants, Small, 2012, vol. 8, no. 15, pp. 2328–2334. https://doi.org/10.1002/smll.201102661

    Article  CAS  PubMed  Google Scholar 

  82. Wang, X., Han, H., Liu, X., et al., Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants, J. Nanopart. Res., 2012, vol. 14, art. ID 841. https://doi.org/10.1007/s11051-012-0841-5

    Article  CAS  Google Scholar 

  83. Warheit, D., Nanoparticles: Health impacts?, Mater. Today, 2004, vol. 7, no. 2, pp. 32–35. https://doi.org/10.1016/S1369-7021(04)00081-1

    Article  CAS  Google Scholar 

  84. Welsher, K., Liu, Z., Daranciang, D., and Dai, H., Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules, Nano Lett., 2008, vol. 8, no. 2, pp. 586–590. https://doi.org/10.1021/nl072949q

    Article  CAS  PubMed  Google Scholar 

  85. Wild, E. and Jones, K.C., Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants, Environ. Sci. Technol., 2009, vol. 43, no. 14, pp. 5290–5294. https://doi.org/10.1021/es900065h

    Article  CAS  PubMed  Google Scholar 

  86. Yoshiba, Y., Kiyosue, T., Nakashima, K., et al., Regulation of levels of proline as an osmolyte in plants under water stress, Plant Cell Physiol., 1997, vol. 38, no. 10, pp. 1095–1102. https://doi.org/10.1093/oxfordjournals.pcp.a029093

    Article  CAS  PubMed  Google Scholar 

  87. Zaytseva, O. and Neumann, G., Differential impact of multi-walled carbon nanotubes on germination and seedling development of Glycine max, Phaseolusvulgaris and Zea mays, Eur. Chem. Bull., 2016, vol. 5, no. 5, pp. 202–210.https://doi.org/10.17628/ECB.2016.5.202

    Article  CAS  Google Scholar 

  88. Zaytseva, O., Wang, Z., and Neumann, G., Phytotoxicity of carbon nanotubes in soybean as determined by interactions with micronutrients, J. Nanopart. Res., 2017, vol. 19, art. ID 29. https://doi.org/10.1007/s11051-016-3722-5

    Article  CAS  Google Scholar 

  89. Zhang, M., Gao, B., Chen, J., et al., Effects of graphene on seed germination and seedling growth, J. Nanopart. Res., 2015, vol. 17, no. 2, art. ID 78. https://doi.org/10.1007/s11051-015-2885-9

    Article  CAS  Google Scholar 

  90. Zhang, W., Zhang, Z., and Zhang, Y., The application of carbon nanotubes in target drug delivery systems for cancer therapies, Nano Res. Lett., 2011, vol. 6, art. ID 555. https://doi.org/10.1186/1556-276X-6-555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Prylutska, D. V. Franskevych or A. I. Yemets.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prylutska, S.V., Franskevych, D.V. & Yemets, A.I. Cellular Biological and Molecular Genetic Effects of Carbon Nanomaterials in Plants. Cytol. Genet. 56, 351–360 (2022). https://doi.org/10.3103/S0095452722040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722040077

Keywords:

Navigation