Skip to main content
Log in

Genetic Polymorphism of BoLA-DRB3.2 Locus in Ukrainian Cattle Breeds

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The results of the study of BoLA-DRB3 gene polymorphism in four domestic breeds are presented: Ukrainian black-and-white dairy (n = 293), Ukrainian red-and-white dairy (n = 131), Gray Ukrainian (n = 93), and Ukrainian white-headed (n = 49). The allele frequencies were determined based on the analysis of restriction fragment length polymorphism of the products of amplification of BoLA-DRB3 gene exon 2. Genetic profiles of the breeds were formed according to the following indices: allele (Pa) and genotype (Ga) frequencies, observed (Ho) and expected (He) heterozygosity, Wright fixation index (FIS), total (Na) and effective (Ae) number of alleles, and Shannon (I) and Pielou (J) efficiency indices. The maximal number of alleles were in the experimental sample of Ukrainian black-and-white dairy breed (Na = 37). In Ukrainian red-and-white dairy, Ukrainian white-headed, and Gray Ukrainian breeds, 31, 29, and 28 variants were found, respectively. In two breeds, the alleles with “no established nomenclature” were typed: Gray Ukrainian, jba, *jab, *jbb, *nad and *nda; Ukrainian white-headed, *nab, *mdb, *iab, *gbb, *fbd, *naa; their portion was 8.9 and 7.1%, respectively. The portion of “informative” alleles was: Ukrainian black-and-white dairy, 55.8% (seven alleles); Ukrainian red-and-white dairy, 60.4% (six); Gray Ukrainian, 69.9% (four); Ukrainian white-headed, 65.3% (seven). The expected heterozygosity and Wright index had the following values: Ukrainian black-and-white dairy, He = 0.942, FIS = 0.022; Ukrainian red-and-white dairy, He = 0.93, FIS = 0.032; Gray Ukrainian, He = 0.774, FIS = 0.041; Ukrainian white-headed, He = 0.927, FIS = –0.035. According to biodiversity indices, the greatest variability is typical for the Ukrainian black-and-white dairy breed (Ae = 17.2; I = 3.13; J = 0.6). The Ukrainian white-headed (Ae = 13.7; I = 2.93; J = 0.61) and Ukrainian red-and-white dairy (Ae = 11.5; I = 2.87; J = 0.558) cattle also had a high level of variability. A low level of biodiversity was found in Gray Ukrainian breed (Ae = 4.42; I = 2.21; J = 0.455). The analysis of BoLA-DRB3 gene exon 2 polymorphism demonstrated that the greatest genetic diversity is typical for the Ukrainian black-and-while dairy breed. According to genetic distances, the domestic breeds are combined in a single cluster with Holsteins, which indicates their genetic relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bai, L., Otsuki, H., Sato, H., Kohara, J., Isogai, E., Takeshima, S.N., and Aida, Y., Identification and characterization of common B cell epitope in bovine leukemia virus via high-throughput peptide screening system in infected cattle, Retrovirology, 2015, vol. 12, no. 106, pp. 1–14. https://doi.org/10.1186/s12977-015-0233-x

  2. Begon, M., Townsend, C.R., and Harper, J.L., Ecology: From Individuals to Ecosystems, Oxford: Blackwell, 2006.

    Google Scholar 

  3. Behl, J.D., Verma, N.K., Behl, R., and Sodhi, M., Genetic variation of the major histocompatibility complex DRB3.2 locus in the native Bos indicus cattle breeds. Asian-Aust. J. Anim. Sci., 2009, vol. 22, no. 11, pp. 1487–1494. https://doi.org/10.5713/ajas.2009.90043

  4. Behl, J.D., Verma, N.K., Tyagi, N., Mishra, P., Behl, R., and Joshi, B.K., The major histocompatibility complex in bovines: a review, ISRN Vet, Sci., 2012, vol. 2012, art. ID 872710. https://doi.org/10.5402/2012/872710

    Article  CAS  Google Scholar 

  5. Bolaños, I., Hernandez, D., and Alvarez, L., Asociación de los alelos del gen BoLA-DRB3 con la infección natural de Babesia spp en el Ganado criollo Hartón del Valle, Arch. Zootec., 2017, vol. 66, no. 253, pp. 113–120.

    Article  Google Scholar 

  6. Chakraborty, D., Singh, A., Tantia, M., Verma, A., and Chakravarty, A., Genetic polymorphism of BoLA-DRB3.2 locus in Sahiwal cattle, Anim. Sci. Rep., 2015, vol. 9, no. 1, pp. 33–40.

    Google Scholar 

  7. Dietz, A.B., Cohen, N.D., Timms, L., and Kehrli, M.E., Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows, J. Dairy Sci., 1997, vol. 80, no. 2, pp. 406–412. https://doi.org/10.3168/jds.S0022-0302(97)75951-4

    Article  CAS  PubMed  Google Scholar 

  8. Duangjinda, M., Jindatajak, Y., Tipvong, W., Sriwarothai, J., Pattarajinda, V., Katawatin, S., and Boonkum, W., Association of BoLA-DRB3 alleles with tick-borne disease tolerance in dairy cattle in a tropical environment, Vet. Parasitol., 2013, vol. 196, nos. 3–4, pp. 314–320. https://doi.org/10.1016/j.vetpar.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  9. Fernández, I.G., Leyva-Baca, I., Rodríguez-Almeida, F., Ulloa-Arvizu, R., Ríos-Ramírez, J.G., Gayosso-Vázquez, A., and Alonso-Morales, R.A., Creole cattle from northwestern Mexico has high genetic diversity in the locus DRB3.2, Anim. Genet. Res., 2015. https://doi.org/10.1017/S2078633615000211

  10. Firouzamandi, M., Shoja, J., Bazegari, A., and Roshani, E., Study on the association of BoLA-DRB3.2 alleles with clinical mastitis in Iranian Holstein and Sarabi (Iranian native) cattle, Afr. J. Biotech., 2010, vol. 9, no. 15, pp. 2224–2228.

    CAS  Google Scholar 

  11. Gelhaus, A., Schnittger, L., Mehlitz, D., Horstmann, R.D., and Meyer, C.G., Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles, Anim. Genet., 1995, vol. 26, no. 3, pp. 147–153. https://doi.org/10.1111/j.1365-2052.1995.tb03154.x

    Article  CAS  PubMed  Google Scholar 

  12. Gilliespie, B.E., Jayarao, B.M., Dowlen, H.H., and Oliver, S.P., Analysis and frequency of bovine lymphocyte antigen DRB3.2 alleles in Jersey cows, J. Dairy Sci., 1999, vol. 82, no. 9, pp. 2049–2053. https://doi.org/10.3168/jds.S0022-0302(99)75443-3

    Article  CAS  PubMed  Google Scholar 

  13. Giovambattista, G., Moe, K.K., Polat, M., Borjigin, L., Hein, S.T., Moe, H.H., Takeshima, S.N., and Aida, Y., Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar, BMC Genetic, 2020a, vol. 21, art. ID 95. https://doi.org/10. 1186/s12863-020-00905-8

  14. Giovambattista, G., Takeshima, S.N., Moe, K.K., Pereira, Rico, J.A., Polat, M., Loza Vega, A., Arce Cabrera, O.N., and Aida, Y., BoLA-DRB3 genetic diversity in Highland Creole cattle from Bolivia, HLA, 2020b, vol. 96, no. 6, pp. 688–696. https://doi.org/10.1111/tan.14120

    Article  CAS  PubMed  Google Scholar 

  15. Gómez-Castro, S., Trujillo-Bravo, E., Carlos-Vicente, D., and Agron, I., BoLA-DRB3 Polymorphism in Colombian synthetic cattle Lucerna and association with somatic cell counts and mastitis, Rev. Colomb. Cienc. Pec., 2006, vol. 19, no. 3, pp. 270–279.

    Google Scholar 

  16. Goszczynski, D.E., Ripoli, M.V., Takeshima, S.N., Baltian, L., Aida, Y., and Giovambattista, G., Haplotype determination of the upstream regulatory region and the second exon of the BoLA-DRB3 gene in Holstein cattle, Tissue Antigens, 2014, vol. 83, pp. 180–183. https://doi.org/10.1111/tan.12293

    Article  CAS  PubMed  Google Scholar 

  17. Gowane, G.R., Sharma, A.K., Sankar, M., Narayanan, K., Das, B., Subramaniam, S., and Pattnaik, B., Association of BoLA DRB3 alleles with variability in immune response among the crossbred cattle vaccinated for foot-and-mouth disease (FMD), Res. Vet. Sci., 2012, vol. 95, no. 1, pp. 156–163. https://doi.org/10.1016/j.rvsc.2013.03.001

    Article  CAS  Google Scholar 

  18. Gowane, G.R., Vandre, R.K., Nangre, M., and Sharma, A.K., Major histocompatibility complex (MHC) of bovines: an insight into infectious disease resistance, Livest. Res. Int., 2013, vol. 1, no. 2, pp. 46–57.

    Google Scholar 

  19. Groom, M.J., Meffe, G.K., and Carroll, C.R., Principles of Conservation Biology, Sinauer Associates, 2005.

    Google Scholar 

  20. Hedrick, P.W., Whittam, T.S., and Parham, P., Heterozygosity at individual amino acid sites: Extremely high levels for HLA-A and -B genes, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, no. 13, pp. 5897–5901.

    Article  CAS  Google Scholar 

  21. Hedrick, P., Genetic of Populations, Sudbury: Mass Jones and Bartlett Publishers, 2010.

    Google Scholar 

  22. Jost, L., Partitioning diversity into independent alpha and beta components, Ecology, 2007, vol. 88, no. 10, pp. 2427–2439. https://doi.org/10.1890/06-1736.1

    Article  PubMed  Google Scholar 

  23. Juliarena, M.A., Poli, M., Sala, L., Ceriani, C., Gutierrez, S., Dolcini, G., Rodríguez, E.M., Mariño, B., Rodríguez- Dubra, C., and Esteban, E.N., Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene, Anim. Genet., 2008, vol. 39, no. 4, pp. 432–438. https://doi.org/10.1111/j.1365-2052.2008.01750.x

    Article  CAS  PubMed  Google Scholar 

  24. Juliarena, M.A., Barrios, C.N., Ceriani, M.C., and Esteban, E.N., Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle, J. Dairy Sci., 2016, vol. 99, no. 6, pp. 4586–4589. https://doi.org/10.3168/jds.2015-10480

    Article  CAS  PubMed  Google Scholar 

  25. Kumari, N., Loat, S., Saini, S., Dhilor, N., Kumar, A., and Kataria, R.S., Role of BoLA-RB3 genetic diversity against resistance to mastitis in cattle: Review, J. Vet. Sci. Res., 2019, vol. 1, pp. 30–36. https://doi.org/10.36811/jvsr.2019.110004

    Article  Google Scholar 

  26. Lamba, H., Sharma, D., Singh, S., Tiwari, M., Goel, R., Pandey, V., and Singh, S., BoLA-DRB3 polymorphism and their association with milk production traits in Indian cattle breeds, J. Livest. Biodiversity, 2017, vol. 7, no. 1, pp. 52–59.

    Google Scholar 

  27. Lazebnaya, I.V., Perchun, A.V., and Lazebny, O.E., Intrabreed and interbreed variation of the BOLA-DRB3.2 gene in the Kostroma and Yaroslavl indigenous Russian cattle breeds, Immunogenetics, 2020, vol. 72, nos. 6–7, pp. 355–366. https://doi.org/10.1007/s00251-020-01173-7

    Article  CAS  PubMed  Google Scholar 

  28. Lei, W., Liang, Q., Jing, L., Wang, C., Wu, X., and He, H., BoLA-DRB3 gene polymorphism and FMD resistance or susceptibility in Wanbei cattle, Mol. Biol. Rep., 2012, vol. 39, no. 9, pp. 9203–9209. https://doi.org/10.1007/s11033-012-1793-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lo, C.W., Borjigin, L., Saito, S., Fukunaga, K., Saitou, E., Okazaki, K., Mizutani, T., Wada, S., Takeshima, S.N., and Aida, Y., BoLA-DRB3 Polymorphism is associated with differential susceptibility to bovine leukemia virus-induced lymphoma and proviral load, Viruses, 2020, vol. 12, no. 3, art. ID 352. https://doi.org/10.3390/v12030352

    Article  CAS  PubMed Central  Google Scholar 

  30. Maillard, J.C., Martinez, D., and Bensaid, A., An amino acid sequence encoded by the exon 2 of the BoLA DRB3 gene associated with a BoLA class 1 specificity constitutes a likely genetic marker of resistance to dermatophilosis in Brahman zebu cattle in Martinique (FWI), Ann. N. Y. Acad. Sci., 1996, vol. 791, pp. 185–197. https://doi.org/10.1111/j.1749-6632.1996.tb53525.x

    Article  CAS  PubMed  Google Scholar 

  31. Maillard, J.C., Renard, C., Chardon, P., Chantal, I., and Bensaid, A., Characterization of 18 new BoLA-DRB3 alleles, Anim. Genet., 1999, vol. 30, no. 3, pp. 200–203. https://doi.org/10.1046/j.1365-2052.1999.00446.x

    Article  CAS  PubMed  Google Scholar 

  32. Mandefro, A., Sisay, T., Edea, Z., Uzzaman, M.R., Kim, K.S., and Dadi, H., Genetic assessment of BoLA-DRB3 polymorphisms by comparing Bangladesh, Ethiopian, and Korean cattle, J. Anim. Sci. Technol., 2021, vol. 63, no. 2, pp. 248–261. https://doi.org/10.5187/jast.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez, M.L., Machado, M.A., Nascimento, C.S., Silva, M.V., Teodoro, R.L., Furlong, J., Prata, M.C., Campos, A.L., Guimarães, M.F., Azevedo, A.L., Pires, M.F., and Verneque, R.S., Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle, Genet. Mol. Res., 2006, vol. 5, no. 3, pp. 513–524.

    CAS  PubMed  Google Scholar 

  34. McShane, R.D., Gallagher, D.S., Newkirk, H., Taylor, J.F., Burzlaff, J.D., Davis, S.K., and Skow, L.C., Physical localization and order of genes in the class I region of the bovine, Anim. Genet., 2001, vol. 32, no. 5, pp. 235–239.https://doi.org/10.1046/j.1365-2052.2001.00758.x

  35. Miyasaka, T., Takeshima, S.N., Matsumoto, Y., Kobayashi, N., Matsuhashi, T., Miyazaki, Y., Tanabe, Y., Ishibashi, K., Sentsui, H., and Aida, Y., The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of Japanese Black and Holstein cattle in Japan, Gene, 2011, vol. 472, nos. 1–2, pp. 42–49. https://doi.org/10.1016/j.gene.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  36. Morales, J., Herrera, A., and Zuluaga, J., Association of BoLA DRB3 gene polymorphisms with BoHV-1 infection and zootechnical traits, Open Vet. J., 2020, vol. 10, no. 3, pp. 331–339. https://doi.org/10.4314/ovj.v10i3.12

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nassiry, M.R., Shahroodi, F.E., Mosafer, J., Mohammadi, A., Manshad, E., Ghazanfari, S., Mohammad Abadi, M.R., and Sulimova, G.E., Analysis and frequency of bovine lymphocyte antigen (BoLA-DRB3) alleles in Iranian Holstein cattle, Genetika, 2005, vol. 41, no. 6, pp. 817–822.

    CAS  PubMed  Google Scholar 

  38. Nei, M., Genetic distance between populations, Am. Naturalist, 1972, vol. 106, no. 949, pp. 283–292.

    Article  Google Scholar 

  39. Nei, M. and Chesser, R.K., Estimation of fixation indices and gene diversities, Ann. Hum. Genet., 1983, vol. 47, no. 3, pp. 253–259. https://doi.org/10.1111/j.1469-1809.1983.tb00993.x

    Article  CAS  PubMed  Google Scholar 

  40. Nei, M., Tajima, F., and Tateno, Y., Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data, J. Mol. Evol., 1983, vol. 19, no. 2, pp. 153–170.

    Article  CAS  Google Scholar 

  41. Nikbakht Brujeni, G., Ghorbanpour, R., and Esmailnejad, A., Association of BoLA-DRB3.2 alleles with BLV infection profiles (Persistent lymphocytosis/ Lymphosarcoma) and Lymphocyte Subsets in Iranian Holstein Cattle, Biochem. Genet., 2016, vol. 54, no. 2, pp. 194–207. https://doi.org/10.1007/s10528-016-9712-6

    Article  CAS  PubMed  Google Scholar 

  42. Pashmi, M., Qanbari, S., Ghorashi, S.A., Sharifi, A.R., and Simianer, H., Analysis of relationship between bovine lymphocyte antigen DRB3.2 alleles, somatic cell count and milk traits in Iranian Holstein population, J. Anim. Breed. Genet., 2009, vol. 126, no. 4, pp. 296–303. https://doi.org/10.1111/j.1439-0388.2008.00783.x

    Article  CAS  PubMed  Google Scholar 

  43. Paul, W.E., Fundamental Immunology, Lippincott Williams & Wilkins, 2012.

    Google Scholar 

  44. Pielou, E.C., Shannon’s formula as a measure of species diversity: Its use and misuse, Am. Naturalist, 1966, vol. 100, no. 914, pp. 463–465.

    Article  Google Scholar 

  45. Pokorska, J., Kułaj, D., Dusza, M., Ochrem, A., and Makulska, J., The influence of BoLA-DRB3 alleles on incidence of clinical mastitis, cystic ovary disease and milk traits in Holstein Friesian cattle, Mol. Biol. Rep., 2018, vol. 45, no. 5, pp. 917–923. https://doi.org/10.1007/s11033-018-4238-0

    Article  CAS  PubMed  Google Scholar 

  46. Rupp, R., Hernandez, A., and Mallard, B., Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins, J. Dairy Sci., 2007, vol. 90, no. 2, pp. 1029– 1038. https://doi.org/10.3168/jds.S0022-0302(07)71589-8

    Article  CAS  PubMed  Google Scholar 

  47. Ruzina, M.N., Shtyfurko, T.A., Mohammad Abadi, M.R., Gendzhieva, O.B., Cedev, C., and Sulimova, G.E., Polymorphism of the BoLA-DRB3 gene in the Mongolian, Kalmyk, and Yakut cattle breeds, Rus. J. Genet., 2010, vol. 46, no. 4, pp. 517–525. https://doi.org/10.1134/S1022795410040113

    Article  CAS  Google Scholar 

  48. Salim, B., Takeshima, S.N., Nakao, R., Moustafa, M., Ahmed, M., Kambal, S., Mwacharo, J., Alkhaibari, A., and Giovambattista, G., BoLA-DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds nature research, Sci. Rep., 2021, vol. 11, art. ID 17202. https://doi.org/10.1038/s41598-021-96330-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saravanan, R., Murali, N., Thiruvenkadan, A.K., and Das, D.N., Comparitive genome sequence analysis of bovine lymphocyte antigen BoLA DRB3.2 alleles in Deoni and Ongole (Bos indicus) cattle breeds of India, Indian J. Anim. Res., 2021. https://doi.org/10.18805/IJAR.B-4357

  50. Sharif, S., Mallard, B.A., Wilkie, B.N., Sargeant, J.M., Scott, H.M., Dekkers, J.C., and Leslie, K.E., Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle, Anim. Genet., 1998, vol. 29, pp. 185–193. https://doi.org/10.1046/j.1365-2052.1998.00318.x

    Article  CAS  PubMed  Google Scholar 

  51. Sherwin, W.B., Entropy, or information, unifies ecology and evolution and beyond, Entropy, 2018, vol. 20, no. 10, art. ID 727. https://doi.org/10.3390/e20100727

    Article  PubMed Central  Google Scholar 

  52. Sulimova, G.E., DNA markers in genetic research: marker types, their properties and applications, Success Modern Biol., 2004, vol. 124, no. 3, pp. 260–271.

    CAS  Google Scholar 

  53. Sun, L., Song, Y., Riaz, H., and Yang, L., Effect of BoLA-DRB3 exon 2 polymorphisms on lameness of Chinese Holstein cows, Mol. Biol. Rep., 2013, vol. 40, no. 2, pp. 1081–1086. https://doi.org/10.1007/s11033-012-2150-6

    Article  CAS  PubMed  Google Scholar 

  54. Suprovich, T. and Mokhnachova, N., Gene polymorphism of economically-useful traits in Ukrainian gray cattle breed, Anim. Biol., 2017, vol. 19, no. 1, pp. 111–118.https://doi.org/10.15407/animbiol19.01.111

  55. Suprovych, T.M., Suprovych, M.P., Koval, T.V., Karchevska, T.M., Chepurna, V.A., Chornyi, I.O., and Berezhanskyi, A.P., BoLA-DRB3 gene as a marker of susceptibility and resistance of the Ukrainian blackpied and red-pied dairy breeds to mastitis, Regul. Mech. Biosyst., 2018a, vol. 9, no. 3, pp. 363–368. https://doi.org/10.15421/021853

    Article  Google Scholar 

  56. Suprovych, T.M., Dyman, T.M., Suprovych, M.P., Karchevska, T.M., Koval, T.V., Kolodiy, V.A., Population genetic structure of the Ukrainian black-pied dairy breed with the genome BoLA-DRB3, Regul. Mech. Biosyst., 2018b, vol. 9, no. 4, pp. 568–577. https://doi.org/10.15421/021885

    Article  Google Scholar 

  57. Suprovych, T.M., Vishchur, O.I., Suprovych, M.P., and Chepurna, V.A., Relationship between alleles of gene BoLA-DRB3 and somatic cells amount in milk of Ukrainian black-and-white dairy breed, Anim. Biol., 2019, vol. 21, no. 4, pp. 75–83. https://doi.org/10.15407/animbiol21.04.075

    Article  Google Scholar 

  58. Suprovych, T.M., Suprovych, M.P., Kolinchuk, R.V., Karchevska, T.M., Chornyi, I.O., and Kolodiy, V.A., Association of BoLA-DRB3.2 alleles with fusobacteriosis in cows, Regul. Mech. Biosyst., 2020, vol. 11, no. 2, pp. 249–254. https://doi.org/10.15421/022037

    Article  Google Scholar 

  59. Suprovych, T.M., Suprovych, M.P., Mokhnachova, N.B., Biriukova, O.D., Strojanovska, L.V., and Chepurna, V.A., Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene, Regul. Mech. Biosyst., 2021, vol. 12, no. 1, pp. 33–41. https://doi.org/10.15421/022106

    Article  Google Scholar 

  60. Takeshima, S., Saitou, N., Morita, M., Inoko, H., and Aida, Y., The diversity of bovine MHC class II DRB3 genes in Japanese black, Japanese shorthorn, Jersey and Holstein cattle in Japan, Gene, 2003, vol. 316, pp. 111–118. https://doi.org/10.1016/j.gene.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  61. Takeshima, S.N., Miyasaka, T., Polata, M., Kikuya, M., Matsumoto, Y., Mingala, C.N., Villanueva, M.A., Salces, A.J., Onuma, M., and Aida, Y., The great diversity of major histocompatibility complex class II genes in Philippine native cattle, Meta Gene, 2014, vol. 2, pp. 176–190.https://doi.org/10.1016/j.mgene.2013.12.005.12.005

  62. Takeshima, S.N., Giovambattista, G., Okimoto, N., Matsumoto, Y., Rogberg-Muñoz, A., Acosta, T.J., Onuma, M., and Aida, Y., Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations, Tissue Antigens, 2015, vol. 86, no. 6, pp. 419–430. https://doi.org/10.1111/tan.12692

    Article  CAS  PubMed  Google Scholar 

  63. Takeshima, S., Corbi-Botto, C., Giovambattista, G., and Aida, Y., Genetic diversity of BoLA-DRB3 in South American Zebu cattle populations, BMC Genet., 2018, vol. 19, art. ID 33. https://doi.org/10.1186/s12863-018-0618-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tayeng, K., Tomar, S.S., Nanavati, S., Aich, R., Ignetious, S., and Nagoriya, S.K., BoLA-DRB3 gene polymorphism and its association with lactation yield and milk constituents in crossbred cattle, Indian J. Vet. Sci. Biotechnol., 2021, vol. 17, pp. 71–75. https://doi.org/10.21887/ijvsbt.17.1.18

    Article  CAS  Google Scholar 

  65. Valenzano, M., Caffaro, M., Lia, V., Poli, M., and Wilkowsky, S., Diversity of the BoLA-DRB3 Gene in Cattle Breeds from Tropical and Subtropical Regions of south America, 2021. https://doi.org/10.21203/rs.3.rs-251864/v1

  66. Van Eijk, M.J.T., Stewart-Haynes, J.A., and Lewin, H.A., Extensive polymorphism of the BOLA-DRB3 gene distinguished by PCR-RFLP, Anim. Genet., 1992, vol. 23, no. 6, pp. 483–496. https://doi.org/10.1111/j.1365-2052.1992.tb00168.x

    Article  CAS  PubMed  Google Scholar 

  67. Villalobos-Cortés, A.R. and González, R., Sequences of gene BoLA-DRB3.2 from the Guaymi and Guabala creole cattle of Panama, Revista Ciencia Agropecuaria, 2018, vol. 28, pp. 22–36.

    Google Scholar 

  68. Zambrano, A.J., Echeverri, Z.J., and López-Herrera, A., Association of gene BoLA DRB3.2 with production traits in a dairy herd of Antioquia, Colombia, Rev. MVZ Córdoba, 2014, vol. 19, no. 2, pp. 4116–4129. https://doi.org/10.21897/rmvz.105

    Article  Google Scholar 

  69. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, no. 2, pp. 176–183. https://doi.org/10.1006/geno.1994.1151

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded by any specific grant from the financial institutions in the state, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Salyha.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All studies were carried out taking into account the requirements of the Council of Europe Directive 1998/58/EC of July 20, 1998, concerning the protection of animals kept for farming purposes, the European Convention “On the Protection of Vertebrate Animals Used for Experimental and Scientific Purposes” of March 18, 1986, the Council of Europe Directive 2010/63/EC of September 22, 2010, and the “General Ethical Principles for Experiments on Animals” accepted by the First National Congress on Bioethics in Kyiv in 2001. The permissions for the use of animals for experimental studies were obtained in Podilsky State Agrarian Technical University and Zubets Institute of Animals Breeding and Genetics (National Academy of Agrarian Sciences of Ukraine) and approved by the bioethics committees in both institutions. The experimental work was carried out during 2010–2018.

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suprovych, T.M., Salyha, Y.T., Suprovych, M.P. et al. Genetic Polymorphism of BoLA-DRB3.2 Locus in Ukrainian Cattle Breeds. Cytol. Genet. 56, 319–330 (2022). https://doi.org/10.3103/S0095452722040089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722040089

Keywords:

Navigation