Skip to main content
Log in

Comparative Analysis of Promoters of DREB2B Transcription Factor Genes in Deschampsia antarctica and Other Grasses

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The organization of promoters of DREB2B TF ortholog genes involved in the response to abiotic stresses was studied in D. antarctica E. Desv. extremophile plant and 12 more grass species with different cold and drought resistance. The evolutionary distances between the sequences of promoters were 0.621 on average, those between coding sequences (including introns) were 0.442, and the values of nucleotide diversity (π) for these regions were 0.410 and 0.274, respectively. Clustering of sequences corresponded in general to the accepted systematic division of the Poaceae family into subfamilies. Fifty-four cis-elements involved in the response to abiotic and biotic stresses, light, hormones (particularly, abscisic acid, auxin, methyl jasmonate, ethylene, gibberellin, and salicylic acid), and tissue-specific cis-elements were identified. Most of the cis-elements were associated with the response to abiotic stress that is consistent with data on DREB2B TF functions. Except for single peculiarities, representatives of different grass subfamilies and D. antarctica were similar in the total set of cis-elements in the DREB2B promoter that indicates the similarity of the regulation of expression of this gene and its potential functions in the response to stress in the studied species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Akbudak, M.A., Filiz, E., and Kontbay, K., DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses, 3 Biotech, 2018, vol. 8, no. 10, art. ID 426. https://doi.org/10.1007/s13205-018-1454-1

  2. Alves, G.S.C., Torres, L.F., de Aquino, S.O., et al., Nucleotide diversity of the coding and promoter regions of DREB1D, a candidate gene for drought tolerance in Coffea species, Trop. Plant Biol., 2018, vol. 11, pp. 31–48. https://doi.org/10.1007/s12042-018-9199-x

    Article  CAS  Google Scholar 

  3. Bertini, L., Cozzolino, F., Proietti, S., et al., What antarctic plants can tell us about climate changes: temperature as a driver for metabolic reprogramming, Biomolecules, 2021, vol. 11, no. 8, art. ID 1094. https://doi.org/10.3390/biom11081094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Binenbaum, J., Weinstain, R., and Shani, E., Gibberellin localization and transport in plants, Trends Plant Sci., 2018, vol. 23, no. 5, pp. 410–421. https://doi.org/10.1016/j.tplants.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  5. Bublyk, O.M., Andreev, I.O., and Kunakh, V.A., In silico identification and analysis of stress-inducible DREB2 transcription factors genes in Deschampsia antarctica Desv., in Factors in Experimental Evolution of Organisms, 2016, vol. 19, pp. 202–207. (in Ukrainian)

  6. Camacho, C., Coulouris, G., Avagyan, V., et al., BLAST+: architecture and applications, BMC Bioinf., 2009, vol. 10, art. ID 421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  7. Dubois, M., Van den Broeck, L., and Inzé, D., The pivotal role of ethylene in plant growth, Trends Plant Sci., 2018, vol. 23, no. 4, pp. 311–323. https://doi.org/10.1016/j.tplants.2018.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edgar, R.C., MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinf., 2004, vol. 5, art. ID 113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  9. Egawa, C., Kobayashi, F., Ishibashi, M., et al., Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat, Genes Genet. Syst., 2006, vol. 81, no. 2, pp. 77–91. https://doi.org/10.1266/ggs.81.77

    Article  CAS  PubMed  Google Scholar 

  10. Emenecker, R.J. and Strader, L.C., Auxin-abscisic acid interactions in plant growth and development, Biomolecules, 2020, vol. 10, no. 2, art. ID 281. https://doi.org/10.3390/biom10020281

    Article  CAS  PubMed Central  Google Scholar 

  11. Erpen, L., Devi, H.S., Grosser, J.W., et al., Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants, Plant Cell, Tiss. Organ Cult., 2018, vol. 132, pp. 1–25. https://doi.org/10.1007/s11240-017-1320-6

    Article  CAS  Google Scholar 

  12. Feng, K., Hou, X.-L., Xing, G.-M., et al., Advances in AP2/ERF super-family transcription factors in plant, Crit. Rev. Biotechnol., 2020, vol. 40, no. 6, pp. 750–776. https://doi.org/10.1080/07388551.2020.1768509

    Article  CAS  PubMed  Google Scholar 

  13. Filiz, E. and Tombuloğlu, H., In silico analysis of DREB transcription factor genes and proteins in grasses, Appl. Biochem. Biotechnol., 2014, vol. 174, pp. 1272–1285. https://doi.org/10.1007/s12010-014-1093-x

    Article  CAS  PubMed  Google Scholar 

  14. Herath, V., Small family, big impact: In silico analysis of DREB2 transcription factor family in rice, Comput. Biol. Chem., 2016, vol. 65, pp. 128–139. https://doi.org/10.1016/j.compbiolchem.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  15. Jung, W.J. and Seo, Y.W., Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies, Gene, 2019, vol. 684, pp. 82–94. https://doi.org/10.1016/j.gene.2018.10.055

    Article  CAS  PubMed  Google Scholar 

  16. Kim, H.-J., Kim, Y.-K., Park, J.-Y., and Kim, J., Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana, Plant J., 2002, vol. 29, no. 6, pp. 693–704. https://doi.org/10.1046/j.1365-313X.2002.01249.x

    Article  CAS  PubMed  Google Scholar 

  17. Kovalchuk, N., Jia, W., Eini, O., et al., Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters, Plant Biotechnol. J., 2013, vol. 11, no. 6, pp. 659–670. https://doi.org/10.1111/pbi.12056

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, S., Stecher, G., Li, M., et al., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, J., Kang, Y., Shin, S.C., et al., Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia аntarctica Desv., PLoS One, 2014, vol. 9, no. 6, art. ID e101100. https://doi.org/10.1371/journal.pone.0092501

    Article  CAS  Google Scholar 

  20. Lescot, M., Déhais, P., Thijs, G., et al., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucl. Acids Res., 2002, vol. 30, no. 1, pp. 325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, C., Yue, J., Wu, X., et al., An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress, J. Exp. Bot., vol. 65, no. 18, pp. 5415–5427. https://doi.org/10.1093/jxb/eru302

  22. Matsukura, S., Mizoi, J., Yoshida, T., et al., Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes, Mol. Genet. Genomics, 2010, vol. 283, pp. 185–196. https://doi.org/10.1007/s00438-009-0506-y

    Article  CAS  PubMed  Google Scholar 

  23. Mohamed, H.I., El-Shazly, H.H., and Badr, A., Role of salicylic acid in biotic and abiotic stress tolerance in plants, in Plant Phenolics in Sustainable Agriculture, Lone, R., Shuab, R., and Kamili, A., Eds., Singapore: Springer-Verlag, 2020, pp. 533–554. https://doi.org/10.1007/978-981-15-4890-1_23

    Book  Google Scholar 

  24. Nakashima, K., Yusuke, I., and Yamaguchi-Shinozaki, K., Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses, Plant Physiol., 2009, vol. 149, no. 1, pp. 88–95. https://doi.org/10.1104/pp.108.129791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987. https://doi.org/10.7312/nei-92038

    Book  Google Scholar 

  26. Neji, M., Geuna, F., Gandour, M., et al., Patterns of morpho-phenological and genetic variation of Brachypodium distachyon (L.) P.Beauv. complex in Tunisia, Genet. Resour. Crop Evol., 2022, vol. 69, pp. 577–586 doi.org/https://doi.org/10.1007/s10722-021-01242-0

    Article  Google Scholar 

  27. Novillo, F., Alonso, J.M., Ecker, J.R., and Salinas, J., CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 11, pp. 3985–3990. https://doi.org/10.1073/pnas.0303029101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozheredova, I.P., Parnikoza, I.Yu., Poronnik, O.O., et al., Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors, Cytol. Genet., 2015, vol. 49, no. 2, pp. 139–145. https://doi.org/10.3103/S0095452715020085

    Article  Google Scholar 

  29. Pardo, J. and VanBuren, R., Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals, Plant Cell, 2021, vol. 33, no. 11, pp. 3391–3401.https://doi.org/10.1093/plcell/koab205

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parnikoza, I., Kozeretska, I., and Kunakh, V., Vascular plants of the Maritime Antarctic: origin and adaptation, Am. J. Plant Sci., 2011, vol. 2, no. 3, pp. 381–395. https://doi.org/10.4236/ajps.2011.23044

    Article  Google Scholar 

  31. Per, T.S., Khan, M.I.R., Anjum, N.A., et al., Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters, Environ. Exp. Bot., 2018, vol. 145, pp. 104–120. https://doi.org/10.1016/j.envexpbot.2017.11.004

    Article  CAS  Google Scholar 

  32. Qin, F., Kakimoto, M., Sakuma, Y., et al., Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L., Plant J., 2007, vol. 50, no. 1, pp. 54–69. https://doi.org/10.1111/j.1365-313X.2007.03034.x

    Article  CAS  PubMed  Google Scholar 

  33. Roelofs, D., Morgan, J., and Sturzenbaum, S., The significance of genome-wide transcriptional regulation in the evolution of stress tolerance, Evol. Ecol., 2010, vol. 24, pp. 527–539. https://doi.org/10.1007/s10682-009-9345-x

    Article  Google Scholar 

  34. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  35. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  36. Schubert, M., Grønvold, L., Sandve, S.R., et al., Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae, Plant Physiol., 2019, vol. 180, no. 1, pp. 404–419. https://doi.org/10.1104/pp.18.01448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh, K. and Chandra, A., DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants, Biologia, 2021, vol. 76, pp. 3043–3055. https://doi.org/10.1007/s11756-021-00840-8

    Article  CAS  Google Scholar 

  38. Tamura, K., Nei, M., and Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 30, pp. 11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tavakol, E., Sardaro, M.L.S., Shariati, V., et al., Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors, Gene, 2014, vol. 549, no. 1, pp. 24–32. https://doi.org/10.1016/j.gene.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  40. VanWallendael, A., Soltani, A., Emery, N.C., et al., A molecular view of plant local adaptation: Incorporating stress-response networks, Annu. Rev. Plant Biol., 2019, vol. 70, pp. 559–583. https://doi.org/10.1146/annurev-arplant-050718-100114

    Article  CAS  PubMed  Google Scholar 

  41. Walther, D., Brunnemann, R., and Selbig, J., The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana, PLoS Genet., 2007, vol. 3, no. 2, art. ID e11. https://doi.org/10.1371/journal.pgen.0030011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, J., Song, L., Gong, X., Xu, J., and Li, M., Functions of jasmonic acid in plant regulation and response to abiotic stress, Int. J. Mol. Sci., 2020, vol. 21, no. 4, art. ID 1446. https://doi.org/10.3390/ijms21041446

    Article  CAS  PubMed Central  Google Scholar 

  43. Xiaxia, Y., Wenjin, Zh., Yu, Zh., et al., The roles of methyl jasmonate to stress in plants, Funct. Plant Biol., 2018, vol. 46, no. 3, pp. 197–212. https://doi.org/10.1071/FP18106

    Article  CAS  Google Scholar 

  44. Xue, G.P. and Loveridge, C.W., HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element, Plant J., 2004, vol. 37, no. 3, pp. 326–339. https://doi.org/10.1046/j.1365-313X.2003.01963.x

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi-Shinozaki, K., and Shinozaki, K., Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters, Trends Plant Sci., 2005, vol. 10, no. 2, pp. 88–94. https://doi.org/10.1016/j.tplants.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  46. Yue, C., Cao, H., Lin, H., et al., Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments, Planta, 2019, vol. 250, pp. 281–298. https://doi.org/10.1007/s00425-019-03171-w

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, N., McHale, L.K., and Finer, J.J., Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters, Plant Biotechnol. J., 2019, vol. 17, no. 4, pp. 724–735. https://doi.org/10.1111/pbi.13010

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Y. and Li, X., Salicylic acid: biosynthesis, perception, and contributions to plant immunity, Curr. Opin. Plant Biol., 2019, vol. 50, pp. 29–36. https://doi.org/10.1016/j.pbi.2019.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the scientific research “Genetics and Physiological and Biochemical Mechanisms of Plant Adaptation to the Extreme Conditions of the Environment” (2021–2025), no. 0120U105249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Bublyk.

Ethics declarations

The authors declare that they have no conflicts of interest.

The authors confirm that there are no violations of the nondisclosure agreement. This article does not contain any studies involving animals or human participants.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bublyk, O.M., Andreev, I.O. & Kunakh, V.A. Comparative Analysis of Promoters of DREB2B Transcription Factor Genes in Deschampsia antarctica and Other Grasses. Cytol. Genet. 56, 399–409 (2022). https://doi.org/10.3103/S0095452722050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722050048

Navigation