Skip to main content
Log in

CpG Methylation of the Proximal Promoter Region Regulates the Expression of NAC6D Gene in Response to High Temperature in Wheat (Triticum aestivum)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Methylation of DNA promoter sequences at the CpG islands has become a molecular tool for gene regulation. NAC6D gene is induced by different biotic and abiotic stimuli. The proximal promoter sequence of NAC6D was investigated for the impact of CpG methylation on its expression in response to high temperature in wheat. Gene expression was estimated by real time PCR and methylation of NAC6D promoter sequence was investigated by bisulfite sequencing. Results showed that NAC6D was highly induced by high temperature, whereas DNA methylatransferase 3 (Met3) was highly reduced by high temperature. Close investigation of NAC6D promoter methylation revealed that high temperature caused hypomehtylation of the proximal promoter sequence. Twelve CpGsites showed low difference in methylation compared to the control (normal temperature, 25°C), while 3 CpGs (–59, –169, –204) were extremely hypomethylated in response to high temperature compared to their methylation status under the normal condition. The induction of NAC6D was negatively correlated with Met3 suppression and methylation level at the CpG sites in the promoter region. Results prove that methylation greatly contribute to the regulation of NAC6D in response to high temperature. This will improve our current understanding of how plants respond to abiotic stresses at the molecular level and the integration of DNA methylation and epigenetics in the next generation plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Akimoto, K., Katakami, H., Kim, H.J., Ogawa, E., Sano, C.M., Wada, Y., and Sano, H., Epigenetic inheritance in rice plants, Ann. Bot., 2007, vol. 100, no. 2, pp. 205–217. https://doi.org/10.1093/aob/mcm110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alotaibi, S.S., El-Shehawi, A.M., and Elseehy, M., Heat shock proteins expression is regulated by promoter cpg methylation/demethylation under heat stress in wheat varieties, Pak. J. Biol. Sci., 2020, vol. 23, no. 10, pp. 1310–1320. https://doi.org/10.3923/pjbs.2020.1310.1320

    Article  CAS  Google Scholar 

  3. Becker, C. and Weigel, D., Epigenetic variation: origin and transgenerational inheritance, Curr. Opin. Plant Biol., 2012, vol. 15, no. 5, pp. 562–567. https://doi.org/10.1016/j.pbi.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Berdasco, M., Alcázar, R., Garcia-Ortiz, M.V., Ballestar, E., Fernández, A.F., Roldán-Arjona, T., Tiburcio, A.F., Altabella, T., Buisine, N., Quesneville, H., Baudry, A., Lepiniec, L., Alaminos, M., Rodríguez, R., Lloyd, A., Colot, V., Bender, J., Canal, M.J., Esteller, M., and Fraga, M.F., Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells, PLoS One, 2008, vol. 3, no. 10, art. ID e3306. https://doi.org/10.1371/journal.pone.0003306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bird, A., DNA methylation patterns and epigenetic memory, Genes Dev., 2002, vol. 16, no. 1, pp. 6–21. https://doi.org/10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  6. Bräutigam, K., Vining, K.J., Lafon-Placette, C., Fossdal, C.G., Mirouze, M., Marcos, J.G., Fluch, S., Fraga, M.F., Guevara, M., Abarca, D., Johnsen, O., Maury, S., Strauss, S.H., Campbell, M.M., Rohde, A., Díaz-Sala, C., and Cervera, M.T., Epigenetic regulation of adaptive responses of forest tree species to the environment, Ecol. Evol., 2013, vol. 3, no. 2, pp. 399–415. https://doi.org/10.1002/ece3.461

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bucherna, N., Szabó, E., Heszky, L.E., and Nagy, I., DNA methylation and gene expression differences during alternative in vitro morphogenetic processes in eggplant (Solanum melongena L.), In Vitro Cell. Dev. Biol.-Plant, 2001, vol. 37, no. 5, pp. 672–677.

    Article  CAS  Google Scholar 

  8. Carr, I.M., Valleley, E.M., Cordery, S.F., Markham, A.F., and Bonthron, D.T., Sequence analysis and editing for bisulphite genomic sequencing projects, Nucleic Acids Res., 2007, vol. 35, no. 10, art. ID e79. https://doi.org/10.1093/nar/gkm330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, S.W., Henderson, I.R., and Jacobsen, S.E., Gardening the genome: DNA methylation in Arabidopsis thaliana, Nat. Rev. Genet., 2005, vol. 6, no. 5, pp. 351–360. https://doi.org/10.1038/nrg1601

    Article  CAS  PubMed  Google Scholar 

  10. Colaneri, A.C. and Jones, A.M., Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential, PLoS One, 2013, vol. 8, no. 4, art. ID e59878. https://doi.org/10.1371/journal.pone.0059878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conrath, U., Molecular aspects of defence priming, Trends Plant Sci., 2011, vol. 16, no. 10, pp. 524–531. https://doi.org/10.1016/j.tplants.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  12. Dai, Y., Ni, Z., Dai, J., Zhao, T., and Sun, Q., Isolation and expression analysis of genes encoding DNA methyltransferase in wheat (Triticum aestivum L.), Biochim. Biophys. Acta, 2005, vol. 1729, no. 2, pp. 118–125. https://doi.org/10.1016/j.bbaexp.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  13. Demeulemeester, M., Van Stallen, N., and De Proft, M., Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization, Plant Sci., 1999, vol. 142, no. 1, pp. 101–108.

    Article  CAS  Google Scholar 

  14. Deng, S., Dai, H., Arenas, C., Wang, H., Niu, Q.W., and Chua, N.H., Transcriptional silencing of Arabidopsis endogenes by single-stranded RNAs targeting the promoter region, Plant Cell Physiol., 2014, vol. 55, no. 4, pp. 823–833.

    Article  CAS  Google Scholar 

  15. Elseehy, M.M. and El-Shehawi, A.M., Expression profile of wheat DNA methyltransferases genes in egyptian wheat (Triticum Aestivum) varieties under peg induced dehydration, Alexandria Sci. Exch. J., 2018, vol. 39, pp. 695–701.

    Article  Google Scholar 

  16. Elseehy, M.M. and El-Shehawi, A.M., Methylation of exogenous promoters regulates soybean isoflavone synthase (GmIFS) transgene in T0 transgenic wheat (Triticum aestivum), Cytol. Genet., 2020, vol. 54, no. 3, pp. 271–282. https://doi.org/10.3103/S0095452720030032

    Article  Google Scholar 

  17. Elseehy, M.M., Differential transgeneration methylation of exogenous promoters in T1 transgenic wheat (Triticum aestivum), Cytol. Genet., 2020, vol. 54, no. 5, pp. 493–504.

    Article  Google Scholar 

  18. El-Shehawi, A., Heat Shock Proteins expression is regulated by promoter CpG methylation/demethylation under heat stress in wheat varieties, Pak. J. Biol. Sci., vol. 23, no. 10, pp. 1310–1320.

  19. El-Shehawi, A.M., Fahmi, A.I., Elseehy, M.M., and Nagaty, H.A., Enhancement of nutritional quality of wheat (Triticum aestivum) by metabolic engineering of isoflavone pathway, Am. J. Biochem. Biotechnol., 2013, vol. 9, no. 4, pp. 404–414.

    Article  CAS  Google Scholar 

  20. Fedoroff, N.V., Transposable elements, epigenetics, and genome evolution, Science, 2012, vol. 338, no. 6108, pp. 758–767.

    Article  CAS  Google Scholar 

  21. Guérin, C., Roche, J., Allard, V., Ravel, C., Mouzeyar, S., and Bouzidi, M.F., Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.), PLoS One, 2019, vol. 14, no. 3, art. ID e0213390. https://doi.org/10.1371/journal.pone.0213390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, W., Zhang, J., Zhang, N., Xin, M., Peng, H., Hu, Z., Ni, Z., and Du, J., The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis, PLoS One, 2015, vol. 10, no. 8, art. ID e0135667. https://doi.org/10.1371/journal.pone.0135667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, S.K. and Wagner, D., Role of chromatin in water stress responses in plants, J. Exp. Bot., 2014, vol. 65, no. 10, pp. 2785–2799. https://doi.org/10.1093/jxb/ert403

    Article  CAS  PubMed  Google Scholar 

  24. Hauben, M., Haesendonckx, B., Standaert, E., Van Der Kelen, K., Azmi, A., Akpo, H., Van Breusegem, F., Guisez, Y., Bots, M., Lambert, B., Laga, B., and De Block, M., Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 47, pp. 20109–20114. https://doi.org/10.1073/pnas.0908755106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heilersig, B.H., Loonen, A.E., Janssen, E.M., Wolters, A.M., and Visser, R.G., Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat, Mol. Genet. Genomics, 2006, vol. 275, no. 5, pp. 437–449. https://doi.org/10.1007/s00438-006-0101-4

    Article  CAS  PubMed  Google Scholar 

  26. Ikeuchi, M., Iwase, A., and Sugimoto, K., Control of plant cell differentiation by histone modification and DNA methylation, Curr. Opin. Plant Biol., 2015, vol. 28, pp. 60–67. https://doi.org/10.1016/j.pbi.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  27. Jones, L., Ratcliff, F., and Baulcombe, D.C., RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance, Curr. Biol., 2001, vol. 11, no. 10, pp. 747–757. https://doi.org/10.1016/s0960-9822(01)00226-3

    Article  CAS  PubMed  Google Scholar 

  28. Kathiria, P., Sidler, C., Golubov, A., Kalischuk, M., Kawchuk, L.M., and Kovalchuk, I., Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants, Plant Physiol., 2010, vol. 153, no. 4, pp. 1859–1870. https://doi.org/10.1104/pp.110.157263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Law, J.A. and Jacobsen, S.E., Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet., 2010, vol. 11, no. 3, pp. 204–220. https://doi.org/10.1038/nrg2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y. and Tollefsbol, T.O., DNA methylation detection: bisulfite genomic sequencing analysis, Methods Mol. Biol., 2011, vol. 791, pp. 11–21. https://doi.org/10.1007/978-1-61779-316-5_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lira-Medeiros, C.F., Parisod, C., Fernandes, R.A., Mata, C.S., Cardoso, M.A., and Ferreira, P.C., Epigenetic variation in mangrove plants occurring in contrasting natural environment, PLoS One, 2010, vol. 5, no. 4, art. ID e10326. https://doi.org/10.1371/journal.pone.0010326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  33. Lu, M., Sun, Q.P., Zhang, D.F., Wang, T.Y., and Pan, J.B., Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes, Biochem. Biophys. Res. Commun., 2015, vol. 462, no. 2, pp. 144–150. https://doi.org/10.1016/j.bbrc.2015.04.113

    Article  CAS  PubMed  Google Scholar 

  34. Matzke, M.A., Primig, M., Trnovsky, J., and Matzke, A.J., Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants, Embo J., 1989, vol. 8, no. 3, pp. 643–649.

    Article  CAS  Google Scholar 

  35. Moyano, E., Martínez-Rivas, F.J., Blanco-Portales, R., Molina-Hidalgo, F.J., Ric-Varas, P., Matas-Arroyo, A.J., Caballero, J.L., Muñoz-Blanco, J., and Rodríguez-Franco, A., Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits, PLoS One, 2018, vol. 13, no. 5, art. ID e0196953. https://doi.org/10.1371/journal.pone.0196953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K., NAC transcription factors in plant abiotic stress responses, Biochim. Biophys. Acta, Gene Regul. Mech., 2012, vol. 1819, no. 2, pp. 97–103. https://doi.org/10.1016/j.bbagrm.2011.10.005

    Article  CAS  Google Scholar 

  37. Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Ooka, H., and Kikuchi, S., Genome-wide analysis of NAC transcription factor family in rice, Gene, 2010, vol. 465, nos. 1–2, pp. 30–44. https://doi.org/10.1016/j.gene.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  38. Pinheiro, G.L., Marques, C.S., Costa, M.D., Reis, P.A., Alves, M.S., Carvalho, C.M., Fietto, L.G., and Fontes, E.P., Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response, Gene, 2009, vol. 444, nos. 1–2, pp. 10–23. https://doi.org/10.1016/j.gene.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  39. Qin, D., Wu, H., Peng, H., Yao, Y., Ni, Z., Li, Z., Zhou, C., and Sun, Q., Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array, BMC Genomics, 2008, vol. 9, art. ID 432. https://doi.org/10.1186/1471-2164-9-432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodríguez López, M. and Wilkinson, M.J., Epi-fingerprinting and epi-interventions for improved crop production and food quality, Front. Plant Sci., 2015, vol. 6, art. ID 397. https://doi.org/10.3389/fpls.2015.00397

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saidi, M.N., Mergby, D., and Brini, F., Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum), Plant Physiol. Biochem., 2017, vol. 112, pp. 117–128.https://doi.org/10.1016/j.plaphy.2016.12.028

  42. Saze, H., Tsugane, K., Kanno, T., and Nishimura, T., DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation, Plant Cell Physiol., 2012, vol. 53, no. 5, pp. 766–784.https://doi.org/10.1093/pcp/pcs008

  43. Song, Q., Zhang, T., Stelly, D.M., and Chen, Z.J., Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons, Genome Biol., 2017, vol. 18, no. 1, art. ID 99. https://doi.org/10.1186/s13059-017-1229-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki, M.M. and Bird, A., DNA methylation landscapes: provocative insights from epigenomics, Nat. Rev. Genet., 2008, vol. 9, no. 6, pp. 465–476. https://doi.org/10.1038/nrg2341

    Article  CAS  PubMed  Google Scholar 

  45. Takatsuka, H. and Umeda, M., Epigenetic control of cell division and cell differentiation in the root apex, Front. Plant Sci., 2015, vol. 6, art. ID 1178. https://doi.org/10.3389/fpls.2015.01178

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takuno, S. and Gaut, B.S., Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly, Mol. Biol. Evol., 2012, vol. 29, no. 1, pp. 219–227. https://doi.org/10.1093/molbev/msr188

    Article  CAS  PubMed  Google Scholar 

  47. Tolley, B.J., Woodfield, H., Wanchana, S., Bruskiewich, R., and Hibberd, J.M., Light-regulated and cell-specific methylation of the maize PEPC promoter, J. Exp. Bot., 2012, vol. 63, no. 3, pp. 1381–1390. https://doi.org/10.1093/jxb/err367

    Article  CAS  PubMed  Google Scholar 

  48. Tricker, P.J., López, C.M., Gibbings, G., Hadley, P., and Wilkinson, M.J., Transgenerational, dynamic methylation of stomata genes in response to low relative humidity, Int. J. Mol. Sci., 2013, vol. 14, no. 4, pp. 6674–6689. https://doi.org/10.3390/ijms14046674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., and Dubcovsky, J., A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat, Science, 2006, vol. 314, no. 5803, pp. 1298–1301. https://doi.org/10.1126/science.1133649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, W.S., Pan, Y.J., Zhao, X.Q., Dwivedi, D., Zhu, L.H., Ali, J., Fu, B.Y., and Li, Z.K., Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.), J. Exp. Bot., 2011, vol. 62, no. 6, pp. 1951–1960. https://doi.org/10.1093/jxb/erq391

    Article  CAS  PubMed  Google Scholar 

  51. Wei, X., Song, X., Wei, L., Tang, S., Sun, J., Hu, P., and Cao, X., An epiallele of rice AK1 affects photosynthetic capacity, J. Integr. Plant Biol., 2017, vol. 59, no. 3, pp. 158–163. https://doi.org/10.1111/jipb.12518

    Article  CAS  PubMed  Google Scholar 

  52. Yaish, M.W., Al-Lawati, A., Al-Harrasi, I., and Patankar, H.V., Genome-wide DNA Methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula), BMC Genomics, 2018, vol. 19, no. 1, art. ID 78. https://doi.org/10.1186/s12864-018-4484-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yaish, M.W., Editorial: epigenetic modifications associated with abiotic and biotic stresses in plants: an implication for understanding plant evolution, Front. Plant Sci., 2017, vol. 8, art. ID 1983. https://doi.org/10.3389/fpls.2017.01983

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yong-Villalobos, L., González-Morales, S.I., Wrobel, K., Gutiérrez-Alanis, D., Cervantes-Perez, S.A., Hayano-Kanashiro, C., Oropeza-Aburto, A., Cruz-Ramirez, A., Martínez, O., and Herrera-Estrella, L., Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 52, pp. E7293–7302. https://doi.org/10.1073/pnas.1522301112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zilberman, D., An evolutionary case for functional gene body methylation in plants and animals, Genome Biol., 2017, vol. 18, no. 1, art. ID 87. https://doi.org/10.1186/s13059-017-1230-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The current work was funded by Taif University Researcher Supporting Project number (TURSP–2020/75), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. El-Shehawi.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shehawi, A.M., Elseehy, M.A. & Elseehy, M.M. CpG Methylation of the Proximal Promoter Region Regulates the Expression of NAC6D Gene in Response to High Temperature in Wheat (Triticum aestivum). Cytol. Genet. 56, 449–457 (2022). https://doi.org/10.3103/S009545272205005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545272205005X

Navigation