Skip to main content
Log in

A Brief Landscape of Epigenetic Mechanisms in Dental Pathologies

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Epigenetics is the study of modifications in DNA expression without changing the sequences in deoxyribonucleic acid. Epigenetic mechanisms are specific “control” modifications responsible for the activity or inactivity of selected genes. Researchers are revealing a strong impact of epigenetic mechanisms on various general diseases in human. It gives clinicians great hope to understand pathomechanisms and start causal treatment. The possibility for dental clinicians is also wide and consists of diagnosis and treatment of diseases occurring in the oral cavity. This review presents the role of epigenetic mechanisms and the growing interest in their possible associations with dental pathologies such as periodontal diseases, craniofacial malformations, and tooth agenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., et al., Histone modifications and their role in epigenetics of atopy and allergic diseases, Allergy, Asthma, Clin. Immunol., 2018, vol. 14, art. ID 39. https://doi.org/10.1186/s13223-018-0259-4

    Article  CAS  Google Scholar 

  2. Alegría-Torres, J.A., Baccarelli, A., and Bollati, vol., Epigenetics and lifestyle, Epigenomics, 2011, vol. 3. pp. 267–277. https://doi.org/10.2217/epi.11.22

    Article  CAS  PubMed  Google Scholar 

  3. Al-Moghrabi, N., Al-Qasem, A.J.S., and Aboussekhra, A., Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women, Int. J. Oncol., 2011, vol. 39, no. 1, pp. 129–135. https://doi.org/10.3892/ijo.2011.1021

    Article  CAS  PubMed  Google Scholar 

  4. Andia, D.C., de Oliveira, N.F.P., Casarin, R.C.V., et al., DNA Methylation status of the IL8 gene promoter in aggressive periodontitis, J. Periodontol., 2010, vol. 81, no. 9, pp. 1336–1341. https://doi.org/10.1902/jop.2010.100082

    Article  CAS  PubMed  Google Scholar 

  5. Audia, J.E. and Campbell, R.M., Histone modifications and cancer, Cold Spring Harbor Perspect. Biol., 2016, vol. 8, art. ID a019521. https://doi.org/10.1101/cshperspect.a019521

    Article  Google Scholar 

  6. Banjar, W. and Alshammari, M.H., Genetic factors in pathogenesis of chronic periodontitis, J. Taibah Univ. Med. Sci., 2014, vol. 9, no. 3, pp. 245–247. https://doi.org/10.1016/j.jtumed.2014.04.003

    Article  Google Scholar 

  7. Bannister, A.J. and Kouzarides, T., Regulation of chromatin by histone modifications, Cell Res., 2011, vol. 21, pp. 381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barros, S.P. and Offenbacher, S., Epigenetics: connecting environment and genotype to phenotype and disease, J. Dent. Res., 2009, vol. 88, pp. 400–408. https://doi.org/10.1177/0022034509335868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barros, S.P. and Offenbacher, S., Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response, Periodontology, 2014, vol. 64, pp. 95–110. https://doi.org/10.1111/prd.12000

    Article  Google Scholar 

  10. Beaty, T.H., Ruczinski, I., Murray, J.C., et al., Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate, Genet. Epidemiol., 2011, vol. 35, no. 6, pp. 469–478. https://doi.org/10.1002/gepi.20595

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bin Mohsin, A.H. and Barshaik, S., Epigenetics in dentistry: a literature review, J. Clin. Epigenetics, 2017, vol. 3, no. 1, pp. 1–4. https://doi.org/10.21767/2472-1158.100035

    Article  Google Scholar 

  12. Chai, Y. and Maxson, R.E., Recent advances in craniofacial morphogenesis, Dev. Dyn., 2006, vol. 235, no. 9, pp. 2353–2375. https://doi.org/10.1002/dvdy.20833

    Article  PubMed  Google Scholar 

  13. de Faria Amormino, S.A., Arão, T.C., Saraiva, A.M., et al., Hypermethylation and low transcription of TLR2 gene in chronic periodontitis, Hum. Immunol., 2013, vol. 74, no. 9, pp. 1231–1236. https://doi.org/10.1016/j.humimm.2013.04.037

    Article  CAS  PubMed  Google Scholar 

  14. De Oliveira, N.F.P., Andia, D.C., Planello, A.C., et al., TLR2 and TLR4 gene promoter methylation status during chronic periodontitis, J. Clin. Periodontol., 2011, vol. 38, no. 11, pp. 975–983. https://doi.org/10.1111/j.1600-051X.2011.01765.x

    Article  CAS  PubMed  Google Scholar 

  15. De Souza, A.P., Planello, A.C., Marques, M.R., et al., High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis, Clin. Epigenet., 2014, vol. 6, art. ID. https://doi.org/10.1186/1868-7083-6-15

  16. Delpu, Y., Cordelier, P., Cho, W.C., and Torrisani, J., DNA methylation and cancer diagnosis, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 15029–15058. https://doi.org/10.3390/ijms140715029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ebersole, J.L., Dawson, D.R., Morford, L.A., et al., Periodontal disease immunology: ‘double indemnity’ in protecting the host, Periodontol, 2013, vol. 62, no. 1, pp. 163–202. https://doi.org/10.1111/prd.12005

    Article  Google Scholar 

  18. Emfietzoglou, R., Pachymanolis, E., and Piperi, C., Impact of epigenetic alterations in the development of oral diseases, Curr. Med. Chem., 2021, vol. 28, no. 6, pp. 1091–1103. https://doi.org/10.2174/0929867327666200114114802

    Article  CAS  PubMed  Google Scholar 

  19. Faam, B., Ali Ghaffari, M., Ghadiri, A., and Azizi, F., Epigenetic modifications in human thyroid cancer (Review), Biomed. Rep., 2015, vol. 3, no. 1, pp. 3–8. https://doi.org/10.3892/br.2014.375

    Article  PubMed  Google Scholar 

  20. Frazier-Bowers, S.A., Guo, D.C., Cavender, A., et al., A novel mutation in human PAX9 causes molar oligodontia, J. Dent. Res., 2002, vol. 81, no. 2, pp. 129–133.

    Article  CAS  Google Scholar 

  21. Hajishengallis, G., Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response, Trends Immunol., 2014, vol. 35, no. 1, pp. 3–11. https://doi.org/10.1016/j.it.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  22. Hart, T.C. and Kornman, K.S., Genetic factors in the pathogenesis of periodontitis, Periodontology, 1997, vol. 14, n. 1, pp. 202–215. https://doi.org/10.1111/j.1600-0757.1997.tb00198.x

    Article  CAS  Google Scholar 

  23. Howe, L.J., Richardson, T.G., Arathimos, R., et al., Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate, Epigenomics, 2019, vol. 11, no. 2, pp. 133–145. https://doi.org/10.2217/epi-2018-0091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hua, J.T., Chen, S., and He, H.H., Landscape of noncoding RNA in prostate cancer, Trends Genet., 2019, vol. 35, no. 11, pp. 840–851. https://doi.org/10.1016/j.tig.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa, I., Host responses in periodontal diseases: a preview, Periodontology, 2007, vol. 43, no. 1, pp. 9–13. https://doi.org/10.1111/j.1600-0757.2006.00188.x

    Article  Google Scholar 

  26. Joehanes, R., Just, A.C., Marioni, R.E., et al., Epigenetic signatures of cigarette smoking, Circ.: Cardiovasc. Genet., 2016, vol. 9, no. 5, pp. 436–447. https://doi.org/10.1161/CIRCGENETICS.116.001506

    Article  CAS  Google Scholar 

  27. Johnston, M.O., Mutations and New Variation: Overview, in Encyclopedia of Life Sciences, Chichester: John Wiley & Sons, 2006.

    Google Scholar 

  28. Jones, P.A. and Baylin, S.B., The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, vol. 3, no. 6, pp. 415–428. https://doi.org/10.1038/nrg816

    Article  CAS  PubMed  Google Scholar 

  29. Kaelin, W.G. and McKnight, S.L., Influence of metabolism on epigenetics and disease, Cell, 2013, vol. 153, no. 1, pp. 56–69. https://doi.org/10.1016/j.cell.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiedrowski, M. and Mroz, A., The effects of selected drugs and dietary compounds on proliferation and apoptosis in colorectal carcinoma, Contemp. Oncol., 2014, vol. 18, no. 4, pp. 222–226. https://doi.org/10.5114/wo.2014.44296

    Article  Google Scholar 

  31. Kurushima, Y., Tsai, P.C., Castillo-Fernandez, J., et al., Epigenetic findings in periodontitis in UK twins: a cross-sectional study, Clin. Epigenet., 2019, vol. 11, art. ID 27. https://doi.org/10.1186/s13148-019-0614-4

    Article  CAS  Google Scholar 

  32. Li, D., Yang, Y., Li, Y., et al., Epigenetic regulation of gene expression in response to environmental exposures: From bench to model, Sci. Total Environ., 2021, vol. 776, art. ID 145998. https://doi.org/10.1016/j.scitotenv.2021.145998

    Article  CAS  Google Scholar 

  33. Marazita, M.L., The evolution of human genetic studies of cleft lip and cleft palate, Annu. Rev. Genomics Hum. Genet., 2012, vol. 13, pp. 263–283. https://doi.org/10.1146/annurev-genom-090711-163729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moosavi, A. and Ardekani, A.M., Role of epigenetics in biology and human diseases, Iran. Biomed. J., 2016, vol. 20, pp. 246–258. https://doi.org/10.22045/ibj.2016.01

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mueller, D.T. and Callanan, V.P., Congenital malformations of the oral cavity, Otolaryngol. Clin. North Am., 2007, vol. 40, no. 1, pp. 141–160. https://doi.org/10.1016/j.otc.2006.10.007

    Article  PubMed  Google Scholar 

  36. Muñoz-Carrillo, J.L., et al., Pathogenesis of periodontal disease, 2019, pp. 1–14.

  37. Nibali, L., Aggressive periodontitis: microbes and host response, who to blame?, Virulence, 2015, vol. 6, no. 3, pp. 223–228. https://doi.org/10.4161/21505594.2014.986407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogasawara, S., Maesawa, C., Yamamoto, M., et al., Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers, Oncogene, 2004, vol. 23, pp. 1117–1124. https://doi.org/10.1038/sj.onc.1207211

    Article  CAS  PubMed  Google Scholar 

  39. Papapanou, P.N., Sanz, M., Buduneli, N., et al., Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions, J. Periodontol., 2018, vol. 89, no. S1, pp. S173–S182. https://doi.org/10.1002/JPER.17-0721

    Article  PubMed  Google Scholar 

  40. Rangasamy, S., D’Mello, S.R., and Narayanan, V., Epigenetics, autism spectrum, and neurodevelopmental disorders, Neurotherapeutics, 2013, vol. 10, pp. 742–756. https://doi.org/10.1007/s13311-013-0227-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Richardson, B. and Yung, R., Role of DNA methylation in the regulation of cell function, J. Lab. Clin. Med., 1999, vol. 134, no. 4, pp. 333–340. https://doi.org/10.1016/S0022-2143(99)90147-6

    Article  CAS  PubMed  Google Scholar 

  42. Rinn, J.L., Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  43. Romano, G., Veneziano, D., Acunzo, M., and Croce, C.M., Small non-coding RNA and cancer, Carcinogenesis, 2017, vol. 38, no. 5, pp. 485–491. https://doi.org/10.1093/carcin/bgx026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salvi, A., Giacopuzzi, E., Bardellini, E., et al., Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis, Int. J. Mol. Med., 2016, vol. 38, no. 5, pp. 1338–1348. https://doi.org/10.3892/ijmm.2016.2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarkar, T., Bansal, R., and Das, P., A novel G to A transition at initiation codon and exon-intron boundary of PAX9 identified in association with familial isolated oligodontia, Gene, 2017, vol. 635, pp. 69–76. https://doi.org/10.1016/j.gene.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  46. Seo, J.-Y., Park, Y.-J., Yi, Y.-A., et al., Epigenetics: general characteristics and implications for oral health, Restor. Dent. Endod., 2015, vol. 40, no. 1, pp. 14–22. https://doi.org/10.5395/rde.2015.40.1.14

    Article  PubMed  Google Scholar 

  47. Sepolia, N., Jindal, D., Kaushwaha, S., et al., A revolution in dentistry: epigenetics, Dent. J. Adv. Stud., 2019, vol. 7, pp. 001–005. https://doi.org/10.1055/s-0039-1685128

  48. Shamsi, M.B., Firoz, A.S., Imam, S.N., et al., Epigenetics of human diseases and scope in future therapeutics, J. Taibah Univ. Med. Sci., 2017, vol. 12, no. 3, pp. 205–211. https://doi.org/10.1016/j.jtumed.2017.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shayevitch, R., Askayo, D., Keydar, I., Ast, G., The importance of DNA methylation of exons on alternative splicing, RNA, 2018, vol. 24, no. 10, pp. 1351–1362. https://doi.org/10.1261/rna.064865.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Slots, J., Periodontitis: facts, fallacies and the future, Periodontology, 2017, vol. 75, no. 1, pp. 7–23. https://doi.org/10.1111/prd.12221

    Article  Google Scholar 

  51. Sperber, G.H., Head and neck embryology, in Current Reconstructive Surgery, Serletti, , Eds., New York: McGraw-Hill, 2017, vol. 1.

    Google Scholar 

  52. Srijyothi, L., Ponne, S., Prathama, T., et al., Roles of non-coding RNAs in transcriptional regulation, in Transcriptional Post-transcriptional Regulation, 2018. https://doi.org/10.5772/intechopen.76125

  53. Tallón-Walton, V., Manzanares-Céspedes, M.C., Carvalho-Lobato, P., et al., Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review, Med. Oral Pathol., Oral Cir. Bucal., 2014. vol. 19, no. 3, art. ID e248-54. https://doi.org/10.4317/medoral.19173

    Article  Google Scholar 

  54. Tian, X. and Fang, J., Current perspectives on histone demethylases, Acta Biochim. Biophys. Sin. (Shanghai), 2007, vol. 39, no. 2, pp. 81–88. https://doi.org/10.1111/j.1745-7270.2007.00272.x

    Article  CAS  PubMed  Google Scholar 

  55. Tokizane, T., Shiina, H., Igawa, M., et al., Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer, Clin. Cancer Res., 2005, vol. 11, no. 16, pp. 5793–5801. https://doi.org/10.1158/1078-0432.CCR-04-2545

    Article  CAS  PubMed  Google Scholar 

  56. Twigg, S.R.F. and Wilkie, A.O.M., New insights into craniofacial malformations, Hum. Mol. Genet., 2015, vol. 24, pp. R50–R59. https://doi.org/10.1093/hmg/ddv228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vieira, A.R., Meira, R., Modesto, A., Murray, J.C., MSX1, PAX9, and TGFA contribute to tooth agenesis in humans, J. Dent. Res., 2004, vol. 83, no. 9, pp. 723–727. https://doi.org/10.1177/154405910408300913

    Article  CAS  PubMed  Google Scholar 

  58. Vyas, T., Gupta, P., Kumar, S., et al., Cleft of lip and palate: A review, J. Fam. Med. Prim. Care, 2017, vol. 6, art. ID 2621. https://doi.org/10.4103/jfmpc.jfmpc_472_20

    Article  Google Scholar 

  59. Waddington, C.H., Genetic assimilation of the bithorax phenotype, Evolution, 1956, vol. 10, no. 1, pp. 1–13. https://doi.org/10.2307/2406091

    Article  Google Scholar 

  60. Wang, J., Sun, K., Shen, Y., et al., DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia, Sci. Rep., 2016, vol. 6, art. ID 19162. https://doi.org/10.1038/srep19162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams, M.A. and Letra, A., The changing landscape in the genetic etiology of human tooth agenesis, Genes (Basel), 2018, vol. 9, no. 5, art. ID 155. https://doi.org/10.3390/genes9050255

    Article  CAS  Google Scholar 

  62. Wilson, A.S., Power, B.E., Molloy, P.L., DNA hypomethylation and human diseases, Biochim. Biophys. Acta, Rev. Cancer, 2007. vol. 1775. pp. 138–162. https://doi.org/10.1016/j.bbcan.2006.08.007

    Article  CAS  Google Scholar 

  63. Wu, C.-T. and Morris, J.R., Genes, genetics, and ep genetics: a correspondence, Science, 2001, vol. 293, no. 5532, pp. 1103–1105. https://doi.org/10.1126/science.293.5532.1103

    Article  CAS  Google Scholar 

  64. Wu, H., Tao, J., and Sun, Y.E., Regulation and function of mammalian DNA methylation patterns: a genomic perspective, Briefings Funct. Genomics, 2012, vol. 11, no. 3, pp. 240–250. https://doi.org/10.1093/bfgp/els011

    Article  CAS  Google Scholar 

  65. Yang, X., Shi, B., Li, L., et al., Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways, Oncogenesis, 2016, vol. 5, art. ID 206. https://doi.org/10.1038/oncsis.2016.16

    Article  CAS  Google Scholar 

  66. Yi, X., Jiang, X., Li, X., Jiang, D.S., Histone lysine methylation and congenital heart disease: From bench to bedside (Review), Int. J. Mol. Med., 2017, vol. 40, no. 4, pp. 953–964. https://doi.org/10.3892/ijmm.2017.3115

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, S., Barros, S.P., Moretti, A.J., et al., Epigenetic regulation of TNFA expression in periodontal disease, J. Periodontol., 2013, vol. 84, no. 11, pp. 1606–1616. https://doi.org/10.1902/jop.2013.120294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, S., Barros, S.P., Niculescu, M.D., et al., Alteration of PTGS2 promoter methylation in chronic periodontitis, J. Dent. Res., 2010, vol. 89, no. 2, pp. 133–137. https://doi.org/10.1177/0022034509356512

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Y., Lv, J., Liu, H., et al., HHMD: the human histone modification database, Nucleic Acids Res., 2009, vol. 38, pp. 149–154. https://doi.org/10.1093/nar/gkp968

    Article  CAS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Tynior.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojciech Tynior, Joanna Katarzyna Strzelczyk A Brief Landscape of Epigenetic Mechanisms in Dental Pathologies. Cytol. Genet. 56, 475–480 (2022). https://doi.org/10.3103/S0095452722050115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722050115

Keywords:

Navigation