Skip to main content
Log in

Problems of Security in Digital Production and Its Resistance to Cyber Threats

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract—

This paper considers digital production as a stage of industrialization. One aspect of this process is the associated digital transformation of control systems. To analyze the problem of ensuring the security of digital production, the concept of cyberphysical systems is used. The perspectives of using homeostatic control of the stability of such systems using self-similarity indicators are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yastreb, N.A., The Fourth Industrial Revolution: Global industrial networks and the Internet of Things, Innovatsion. Vestn. Reg., 2014, no. 4, pp. 22–26.

  2. Davidovich, A., The use of virtual and material digital production is the future of the shipbuilding industry, CADmaster, 2010, no. 2, pp. 66–74.

  3. Baeker, M., Digital technologies improve the principles of lean manufacturing, SAPR Grafika, 2012, no. 2, pp. 42–43.

  4. Zanero, S., Cyber-physical systems, Computer, 2017, vol. 50, no. 4, pp. 14–16.

    Article  Google Scholar 

  5. Seiger, R., Huber, S., Heisig, P., and Assmann, U., Enabling self-adaptive workflows for cyber-physical systems, Lect. Notes Bus. Inf. Process., 2016, vol. 248, pp. 3–17.

    Article  Google Scholar 

  6. Mulligan, D.K. and Schneider, F.B., Doctrine for cybersecurity, Daedalus, 2011, vol. 140, no. 4, pp. 70–92.

    Article  Google Scholar 

  7. Zegzhda, D.P., Poltavtseva, M.A., and Lavrova, D.S., Systematization and security assessment of cyber-physical systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 835–843.

    Article  Google Scholar 

  8. Zegzhda, D.P., Vasil’ev, Yu.S., and Poltavtseva, M.A., Approaches to modeling the security of cyber-physical systems, Probl. Inf. Bezop., Komp’yut. Sist., 2017, no. 3.

  9. Zegzhda, D.P., Sustainability as a criterion for information security in cyber-physical systems, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 813–819.

    Article  Google Scholar 

  10. Ashibani, Y. and Mahmoud, Q.H., Cyber physical systems security: Analysis, challenges and solutions, Comput. Secur., 2017, vol. 68, pp. 81–97.

    Article  Google Scholar 

  11. Bellman, R., The stability of solutions of linear differential equations, Duke Math. J., 1943, vol. 10, no. 4, pp. 643–647.

    Article  MathSciNet  MATH  Google Scholar 

  12. Vasil'ev, Yu.S., Zegzhda, D.P., Zegzhda, P.D., and Stepanova, T.V., Ensuring the technological independence of the Russian Federation in the field of cyber security, Probl. Inf. Bezop., Komp’yut. Sist., 2014, no. 4, pp. 17–29.

  13. Komperda, T., Virtualization Security, Dec. 17, 2012. http://resources.infosecinstitute.com/virtualization-security-2/.

  14. Zegzhda, D.P., Building secure operating systems based on virtualization technologies. http://osday.ru/presentations/zegzhda/presventation-final.pdf.

  15. Zegzhda, P.D. and Zegzhda, D.P., Secure systems design technology, Lect. Notes Comp. Sci., 2001, vol. 2052, pp. 63–71.

    Article  MATH  Google Scholar 

  16. Zegzhda, D.P., Principles and methods for creating secure information processing systems, Doctoral (Eng.) Dissertation, St. Petersburg, 2002.

  17. Chernov, A.Y. and Konoplev, A.S., Trusted executable environment construction task on Intel-based PC, Probl. Inf. Bezop., Komp’yut. Sist., 2016, no. 4, pp. 36–41.

  18. Zegzhda, D.P. and Nikol’skii, A.V., A formal security model of virtual machine hypervisors in cloud computing systems, Probl. Inf. Bezop., Komp’yut. Sist., 2013, no. 1, pp. 7–19.

  19. Zegzhda, D.P. and Kalinin, M.O., Providing a trusted information environment based on the expansion of the concept of integrity and security control, Probl. Inf. Bezop., Komp’yut. Sist., 2009, no. 4, pp. 7–16.

  20. Kalinin, M.O. and Konoplev, A.S., Providing a trusted environment for the functioning of multi-protocol network equipment, Probl. Inf. Bezop., Komp’yut. Sist., 2011, no. 2, pp. 7–11.

  21. Zegzhda, D., Kalinin, M., and Vovk, A., Linux over Osmos: The secure hybrid operating system, International Conference on Enterprise Information Systems and Web Technologies 2008, 2008, pp. 47–54.

  22. Konoplev, A.S., Universal national security platform for distributed information and telecommunication systems, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. C. 721–726.

  23. Busygin, A.G., Konoplev, A.S., and Zegzhda, D.P., Ensuring information security in digital transformation of control systems using blockchain technology, Vserossiiskii forum Sistema raspredelennykh situatsionnykh tsentrov kak osnova tsifrovoi transformatsii gosudarstvennogo upravleniya (All-Russian Forum The System of Distributed Situational Centers as the Basis for the Digital Transformation of Public Administration), 2017.

    Google Scholar 

  24. Zegzhda, D.P. and Pavlenko, E.Yu., Cyber-physical system homeostatic security management, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 805–816. https://doi.org/10.3103/S0146411617080260

    Article  Google Scholar 

  25. Raigorodskii, A., Modeli sluchainykh grafov (Models of Random Graphs), Litres, 2017.

  26. Belenko, V.S., Zegzhda, P.D., and Kalinin, M.O., Elastic security management systems on the example of large-scale mobile transport networks (Vannet), Metody i tekhnicheskie sredstva obespecheniya bezopasnosti informatsii: Sbornik materialov 26-i nauchno-tekhnicheskoi konferentsii, 26–29 iyunya 2017 g. (Methods and Technical Means for Ensuring Information Security: Proc. 26th Sci.-Tech. Conf., June 26–29, 2017), St. Petersburg, 2017.

  27. Casado, M., Garfinkel, T., Akella, A., Freedman, M.J., Boneh, D., McKeown, N., and Shenker, S., SANE: A protection architecture for enterprise networks, 15th Usenix Security Symposium, Vancouver, 2006.

  28. Zegzhda, D.P., Zegzhda, P.D., and Kalinin, M.O., Application of the technology of software-configurable networks in the construction of domestic universal secure network management platform for solving information security problems in large-scale networks with dynamic infrastructure, Informatsionnaya bezopasnost’ regionov Rossii (IBRR-2015). IX SPb mezhregion. konf.: Mat-ly konferentsii (Information Security of Russian Regions (IBRD-2015). Proc. IX S-Peterb. Interreg. Conf.), St. Petersburg, 2015.

  29. Kalinin, M., Zegzhda, P., Zegzhda, D., Vasiliev, Yu., and Belenko, V., Proceedings of 7th International Conference on Information and Communication Technology Convergence (ICTC2016), Jeju Island, 2016, pp. 533–537. doi 10.1109/ICTC.2016.7763528

  30. Kalinin, M.O. and Krundyshev, V.M., Security in networks of unmanned and associated transport using the technology of software-configured networks implemented on the basis of a supercomputer), Metody i tekhnicheskie sredstva obespecheniya bezopasnosti informatsii (Methods and Technical Means for Information Security: Proc. 26th Sci.-Tech. Conf.), St. Petersburg, 2017, pp. 120–121.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. P. Zegzhda or M. A. Poltavtseva.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, Y.S., Zegzhda, D.P. & Poltavtseva, M.A. Problems of Security in Digital Production and Its Resistance to Cyber Threats. Aut. Control Comp. Sci. 52, 1090–1100 (2018). https://doi.org/10.3103/S0146411618080254

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618080254

Keywords:

Navigation