Skip to main content
Log in

Flexible Substrate based Printed Wearable Antennas for Wireless Body Area Networks Medical Applications (Review)

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The wireless body area networks (WBAN) enable to communicate with the on-body wireless devices and systems. For on-body applications, the key requirement for the antennas is the antennas flexibility to mount the antennas on the body. Wearable antennas are fabricated on a flexible substrate to make these antennas suitable for mounting on the human body. Due to the wearable feature of these antennas, they are used in many on-body applications. The wearable characteristic also makes these antennas suitable for many on-body medical applications. This paper presents the technical review of the WBAN, WBAN frequency bands, wearable antenna fundamentals, flexible substrate characteristics, design and development of wearable antennas for medical applications. The wearable antennas are fabricated using the fabrics. The review of the material properties of various flexible substrates is given in detail. Due to the presence of the air in the gaps of fabrics, the dielectric constants of these materials are very low. Detailed analysis of antenna performance due to flexible substrate material characteristics is also discussed. The developments of wearable antennas for WBAN medical applications are presented. The paper also focuses on the design considerations, fabrication methods, challenges, and proposed solutions for the wearable printed antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. E. G. Lim, Z. Wang, J. C. Wang, M. Leach, R. Zhou, C.-U. Lei, K. L. Man, "Wearable textile substrate patch antennas," Eng. Lett., v.22, n.2, p.94 (2014). URI: http://www.engineeringletters.com/issues_v22/issue_2/EL_22_2_08.pdf.

    Google Scholar 

  2. T. U. Pathan, R. K. Karn, "Research of wearable textile antennas for WBAN applications," Int. J. Eng. Adv. Technol., v.8, n.6S3, p.1347 (2019). DOI: https://doi.org/10.35940/ijeat.F1237.0986S319.

    Article  Google Scholar 

  3. S. Ayed, L. Chaari, A. Fares, "A survey on trust management for WBAN: Investigations and future directions," Sensors, v.20, n.21, p.6041 (2020). DOI: https://doi.org/10.3390/s20216041.

    Article  Google Scholar 

  4. Wireless Body Area Network-IEEE 802.15.6 WBAN Basics. URI: https://www.rfwireless-world.com/Tutorials/WBAN-IEEE-802-15-6-tutorial.html.

  5. J. C. Wang, "Review of wearable antennas for WBAN applications," IAENG Int. J. Comput. Sci., v.43, n.4, p.474 (2016). URI: http://www.iaeng.org/IJCS/issues_v43/issue_4/IJCS_43_4_10.pdf.

    Google Scholar 

  6. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New Jersey, 2016). URI: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.

    Google Scholar 

  7. P. Kumar, "Computation of resonant frequency of gap-coupled ring microstrip antennas," Int. J. Autom. Comput., v.11, n.6, p.671 (2014). DOI: https://doi.org/10.1007/s11633-014-0814-5.

    Article  Google Scholar 

  8. I. Ang, B. L. Ooi, "An ultra-wideband stacked microstrip patch antenna," Microw. Opt. Technol. Lett., v.49, n.7, p.1659 (2007). DOI: https://doi.org/10.1002/mop.22555.

    Article  Google Scholar 

  9. M. Ihamji, E. H. Abdelmounim, J. Zbitou, H. Bennis, M. Latrach, "Design of a miniature microstrip antenna with DGS structure for RFID tag," in Lecture Notes in Networks and Systems (2020). DOI: https://doi.org/10.1007/978-3-030-33103-0_10.

    Chapter  Google Scholar 

  10. M. Mabaso, P. Kumar, "A dual band patch antenna for bluetooth and wireless local area networks applications," Int. J. Microw. Opt. Technol., v.13, n.5, p.393 (2018). URI: https://www.ijmot.com/VOL-13-NO-5.aspx.

    Google Scholar 

  11. J. Borah, T. A. Sheikh, S. Roy, "Compact CPW-fed tri-band antenna with a defected ground structure for GSM, WLAN and WiMAX applications," Radioelectron. Commun. Syst., v.59, n.7, p.319 (2016). DOI: https://doi.org/10.3103/S0735272716070050.

    Article  Google Scholar 

  12. P. Kumar, "Design of low cross-polarized patch antenna for ultra-wideband applications," Int. J. Commun. Antenna Propag., v.7, n.4, p.265 (2017). DOI: https://doi.org/10.15866/irecap.v7i4.10435.

    Article  Google Scholar 

  13. K. K. Kumar, M. Pavani, "Design of a compact rectangular patch antenna using defected ground structure," Int. J. Commun. Antenna Propag., v.7, n.4, p.282 (2017). DOI: https://doi.org/10.15866/irecap.v7i4.12389.

    Article  Google Scholar 

  14. P. Kumar, "Single feed dual polarized patch antennas for ultra-wideband applications," Int. Rev. Electr. Eng., v.14, n.4, p.284 (2019). DOI: https://doi.org/10.15866/iree.v14i4.16154.

    Article  Google Scholar 

  15. W. J. Krzysztofik, T. N. Cao, "Metamaterials in application to improve antenna parameters," in Metamaterials and Metasurfaces (IntechOpen, 2019). DOI: https://doi.org/10.5772/intechopen.80636.

    Chapter  Google Scholar 

  16. K. Inamdar, Y. P. Kosta, S. Patnaik, "Criss-cross metamaterial-substrate microstrip antenna with enhanced gain and bandwidth," Radioelectron. Commun. Syst., v.58, n.2, p.69 (2015). DOI: https://doi.org/10.3103/S073527271502003X.

    Article  Google Scholar 

  17. B. T. P. Madhav, A. V. Chaitanya, R. Jayaprada, M. Pavani, "Circular monopole slotted antenna with FSS for high gain applications," ARPN J. Eng. Appl. Sci., v.11, n.15, p.9022 (2016).

    Google Scholar 

  18. B. W. Ngobese, P. Kumar, "A high gain microstrip patch array for 5 GHz WLAN applications," Adv. Electromagn., v.7, n.3, p.93 (2018). DOI: https://doi.org/10.7716/aem.v7i3.783.

    Article  Google Scholar 

  19. S. G. Kirtania, A. W. Elger, M. R. Hasan, A. Wisniewska, K. Sekhar, T. Karacolak, P. K. Sekhar, "Flexible antennas: a review," Micromachines, v.11, n.9, p.847 (2020). DOI: https://doi.org/10.3390/mi11090847.

    Article  Google Scholar 

  20. R. Salvado, C. Loss, R. Gonçalves, P. Pinho, "Textile materials for the design of wearable antennas: a survey," Sensors, v.12, n.11, p.15841 (2012). DOI: https://doi.org/10.3390/s121115841.

    Article  Google Scholar 

  21. S. Zhu, R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., v.57, n.4, p.926 (2009). DOI: https://doi.org/10.1109/TAP.2009.2014527.

    Article  Google Scholar 

  22. N. Singh, A. K. Singh, V. K. Singh, "Design & performance of wearable ultra wide band textile antenna for medical applications," Open Eng., v.5, n.1 (2015). DOI: https://doi.org/10.1515/eng-2015-0012.

    Article  MathSciNet  Google Scholar 

  23. S. M. Shah, N. F. A. Kadir, Z. Z. Abidin, F. C. Seman, S. A. Hamzah, N. Katiran, "A 2.45 GHz semi-flexible wearable antenna for industrial, scientific and medical band applications," Indones. J. Electr. Eng. Comput. Sci., v.15, n.2, p.814 (2019). DOI: https://doi.org/10.11591/ijeecs.v15.i2.pp814-822.

    Article  Google Scholar 

  24. A. Sivabalan, P. Jothilakshmi, "Micro strip wearable O-shaped reconfigurable antenna for medical applications," Int. J. Recent Technol. Eng., v.8, n.1 (2019).

    Google Scholar 

  25. A. Y. I. Ashyap, Z. Zainal Abidin, S. H. Dahlan, H. A. Majid, G. Saleh, "Metamaterial inspired fabric antenna for wearable applications," Int. J. RF Microw. Comput. Eng., v.29, n.3, p.e21640 (2019). DOI: https://doi.org/10.1002/mmce.21640.

    Article  Google Scholar 

  26. B. Mohamadzade, R. M. Hashmi, R. B. V. B. Simorangkir, R. Gharaei, S. Ur Rehman, Q. H. Abbasi, "Recent advances in fabrication methods for flexible antennas in wearable devices: state of the art," Sensors, v.19, n.10, p.2312 (2019). DOI: https://doi.org/10.3390/s19102312.

    Article  Google Scholar 

  27. Y. Li, Z. Zhang, Z. Feng, H. R. Khaleel, "Fabrication and Measurement Techniques of Wearable and Flexible Antennas" (2014). DOI: https://doi.org/10.2495/978-1-84564-986-9/001.

  28. Flexography. URI: https://www.csus.edu/indiv/c/cunninghamk/links/lectures/flexo_gravure.pdf.

  29. Evaporation. URI: http://www.fen.bilkent.edu.tr/~aykutlu/msn551/evaporation.

  30. M. Nisha, S. Sai Shweta, G. T. Selvi, A. M. Bose, "Wearable textile patch antenna: with co-planar waveguide (CPW) feed for medical applications," Int. J. Adv. Sci. Eng. Technol., v.6, n.2, p.67 (2018). URI: http://ijaseat.iraj.in/paper_detail.php?paper_id=12445.

    Google Scholar 

  31. R. Kumar, J. Singh, B. S. Sohi, "Hexagonal shaped body wearable textile antenna on EBG substrate material," Int. J. Comput. Sci. Mob. Comput., v.5, n.6, p.260 (2016). URI: https://www.ijcsmc.com/docs/papers/June2016/V5I6201667.pdf.

    Google Scholar 

  32. H. Dawood, M. Zahid, H. Awais, S. Shoaib, A. Hussain, A. Jamil, "A high gain flexible antenna for biomedical applications," in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (IEEE, 2020). DOI: https://doi.org/10.1109/ICECCE49384.2020.9179186.

    Chapter  Google Scholar 

  33. C. Du, G. Jin, "A compact CPW-fed band-notched UWB-MIMO flexible antenna for WBAN application," J. Electromagn. Waves Appl., v.35, n.8, p.1046 (2021). DOI: https://doi.org/10.1080/09205071.2020.1868354.

    Article  Google Scholar 

  34. A. Y. I. Ashyap, N. I. M. Elamin, S. H. Dahlan, Z. Z. Abidin, C. H. See, H. A. Majid, N. AL-Fadhali, J. A. A. Mukred, G. Saleh, B. A. F. Esmail, "Via-less electromagnetic band-gap-enabled antenna based on textile material for wearable applications," PLOS ONE, v.16, n.1, p.e0246057 (2021). DOI: https://doi.org/10.1371/journal.pone.0246057.

    Article  Google Scholar 

  35. A. Alomainy, Y. Hao, D. M. Davenport, "Parametric study of wearable antennas with varying distances from the body and different on-body positions," in IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications (IEE, 2007). DOI: https://doi.org/10.1049/ic:20070552.

    Chapter  Google Scholar 

  36. J. Li, Z. Nie, Y. Liu, L. Wang, Y. Hao, "Evaluation of propagation characteristics using the human body as an antenna," Sensors, v.17, n.12, p.2878 (2017). DOI: https://doi.org/10.3390/s17122878.

    Article  Google Scholar 

  37. D. Wen, Y. Hao, M. O. Munoz, H. Wang, H. Zhou, "A compact and low-profile MIMO antenna using a miniature circular high-impedance surface for wearable applications," IEEE Trans. Antennas Propag., v.66, n.1, p.96 (2018). DOI: https://doi.org/10.1109/TAP.2017.2773465.

    Article  Google Scholar 

  38. M. M. Khan, "Compact planar inverted F antenna (PIFA) for smart wireless body sensor networks," in Proceedings of 7th International Electronic Conference on Sensors and Applications (MDPI, Basel, Switzerland, 2020). DOI: https://doi.org/10.3390/ecsa-7-08253.

    Chapter  Google Scholar 

  39. A. R. H. Alhawari, A. H. M. Almawgani, A. T. Hindi, H. Alghamdi, T. Saeidi, "Metamaterial-based wearable flexible elliptical UWB antenna for WBAN and breast imaging applications," AIP Adv., v.11, n.1, p.015128 (2021). DOI: https://doi.org/10.1063/5.0037232.

    Article  Google Scholar 

  40. G. K. Das, S. Basu, B. Mandal, D. Mitra, R. Augustine, M. Mitra, "Gain‐enhancement technique for wearable patch antenna using grounded metamaterial," IET Microwaves, Antennas Propag., v.14, n.15, p.2045 (2020). DOI: https://doi.org/10.1049/iet-map.2020.0083.

    Article  Google Scholar 

  41. D. Wen, Y. Hao, H. Wang, H. Zhou, "Design of a wideband antenna by manipulating characteristic modes of a metallic loop," Microw. Opt. Technol. Lett., v.61, n.2, p.513 (2019). DOI: https://doi.org/10.1002/mop.31560.

    Article  Google Scholar 

  42. D. Wen, Y. Hao, H. Wang, H. Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Trans. Antennas Propag., v.67, n.3, p.1437 (2019). DOI: https://doi.org/10.1109/TAP.2018.2884849.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kumar.

Ethics declarations

ADDITIONAL INFORMATION

P. Kumar, T. Ali, and A. Sharma

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021070013 with DOI: https://doi.org/10.20535/S0021347021070013

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 7, pp. 395-410, June, 2021 https://doi.org/10.20535/S0021347021070013 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Ali, T. & Sharma, A. Flexible Substrate based Printed Wearable Antennas for Wireless Body Area Networks Medical Applications (Review). Radioelectron.Commun.Syst. 64, 337–350 (2021). https://doi.org/10.3103/S0735272721070013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721070013

Navigation