Skip to main content
Log in

Regularization of the Solution of the Inverse VES Problem by the Contrast Stabilization Method: Testing the Algorithm on Model Data

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

Earlier, it was shown that conventional algorithms for solving the inverse VES problem cannot achieve the accuracy required for precision monitoring of a geoelectric section, and regularized algorithms were proposed to improve the accuracy and stability of solving the inverse VES problem. In this paper, we test the resistivity contrast stabilization algorithm on synthetic data. For modeling, a geoelectric section is used, similar to the section of the Garm test site both in the set of layers and their resistivities, and in the characteristics of seasonal variations, as well as noise. It is shown that regularization of the inverse problem greatly reduces errors. The most significant effect is achieved by suppressing the buildup of resistivity. Estimates are obtained for the accuracy in solving the inverse problem, which can be achieved when working with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bobachev, A., IPI2Win: User’s Guide, Moscow: Mosk. Gos. Univ., 2002.

    Google Scholar 

  2. Bobachev, A.A., IPI-1D–One-dimensional profiled interpretation of VES and VES-VP data. http://geoelectric.ru/ipi2win.htm. Cited June 26, 2020.

  3. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Features of instability in solving the inverse problem of vertical electrical sounding for precision monitoring, Seism. Instrum., 2021a, vol. 57, no. 3, pp. 302–320.  https://doi.org/10.3103/S0747923921030038

    Article  Google Scholar 

  4. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Regularization algorithms for increasing the stability of the solution to the inverse problem in precision monitoring of electrical resistivity using the VES method, Seism. Instrum., 2021b, vol. 57, no. 4, pp. 409–423.  https://doi.org/10.3103/S0747923921040022

    Article  Google Scholar 

  5. Bogdanov, M.I., Kalinin, V.V., and Modin, I.N., Application of high-precision low-frequency electrical prospecting systems for long-term monitoring of hazardous geotechnical processes, Inzh. Izyskaniya, 2013, nos. 10–11, pp. 110–115.

  6. Deshcherevskii, A.V., Fraktal’naya razmernost’, pokazatel’ khersta i ugol naklona spektra vremennogo ryada (Fractal Dimension, Hurst Exponent and Slope of the Spectrum of the Time Series), Moscow: Ob”edinennyi Inst. Fiz. Zemli Ross. Akad. Nauk, 1997.

  7. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotoryye voprosy metodiki otsenki srednesezonnykh funktsiy dlya geofizicheskikh dannykh (Some Questions of the Methodology for Assessing the Average Seasonal Functions for Geophysical Data), Moscow: Ob”edinennyi Inst. Fiz. Zemli Ross. Akad. Nauk, 1999.

  8. Deshcherevskii, A.V. and Sidorin, A.Ya., A two-component model of geophysical processes: seasonal variations and flicker noise, Dokl. Earth Sci., 2001, vol. 376, pp. 65–70.

    Google Scholar 

  9. Deshcherevskii, A.V. and Sidorin, A.Ya., Seasonal variations of the apparent resistivity as a function of the sounding depth, Izv., Phys. Solid Earth, 2004, vol. 40, no. 3, pp. 177–193.

    Google Scholar 

  10. Deshcherevskii, A.V. and Sidorin, A.Ya., Algorithm for adaptive estimation of time series seasonal variations: Testing using the example of CO2 concentration variation in the atmosphere, Geofiz. Protsessy Biosfera, 2021, vol. 20, no. 4, pp. 147–174.  https://doi.org/10.21455/GPB2021.4-10

    Article  Google Scholar 

  11. Deshcherevskii, A.V. and Zhuravlev, V.I., Testirovaniye metodiki otsenki parametrov flikker-shuma (Testing the Method for Estimating the Parameters of Flicker Noise), Moscow: Ob”edinennyi Inst. Fiz. Zemli Ross. Akad. Nauk, 1996.

  12. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Spectral-temporal features of seasonal variations in apparent resistivity, Izv., Phys. Solid Earth, 1997a, vol. 33, no. 3, pp. 217–226.

    Google Scholar 

  13. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Flicker-noise structure in the time realizations of geophysical fields, Izv., Phys. Solid Earth, 1997b, vol. 33, no. 7, pp. 515–529.

    Google Scholar 

  14. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., ABD software package: Universal tool for analysis of monitoring data, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 4, pp. 35–48.  https://doi.org/10.21455/std2016.4-6

    Article  Google Scholar 

  15. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 53, pp. 46–59.  https://doi.org/10.3103/S0747923917010030

    Article  Google Scholar 

  16. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 2. WinABD–A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, no. 3, pp. 203–223.  https://doi.org/10.3103/S0747923917030021

    Article  Google Scholar 

  17. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Problems in analyzing time series with gaps and their solution with the WinABD software package, Izv., Atmos. Ocean. Phys., 2017c, vol. 53, no. 7, pp. 659–678.  https://doi.org/10.1134/S0001433817070027

    Article  Google Scholar 

  18. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Constructing the optimal model of the geoelectric section using vertical electrical sounding data: Case study of the central part of the Garm research area, Izv., Atmos. Ocean. Phys., 2018a, vol. 54, no. 10, pp. 1490–1511.  https://doi.org/10.1134/S0001433818100031

    Article  Google Scholar 

  19. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Method for constructing a model of a geoelectric section taking into account seasonal variations based on data from long-term vertical electric sounding monitoring in search of earthquake precursors, Seism. Instrum., 2018b, vol. 54, no. 4, pp. 424–436.  https://doi.org/10.3103/S0747923918040023

    Article  Google Scholar 

  20. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Seasonal variations in specific resistivity in the upper layers of the Earth crust, Seism. Instrum., 2019, vol. 55, pp. 300–312.  https://doi.org/10.3103/S0747923919030058

    Article  Google Scholar 

  21. Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical Sounding of the Geological Environment), part 1, Khmelevskoy, V.K. and Shevnin, V.A., Eds., Moscow: Mosk. Gos. Univ., 1988.

    Google Scholar 

  22. Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical Sounding of the Geological Environment), part 2, Khmelevskoy, V.K. and Shevnin, V.A., Eds., Moscow: Mosk. Gos. Univ., 1992.

    Google Scholar 

  23. Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical Sounding of the Geological Environment), part 3, Khmelevskoy, V.K. and Shevnin, V.A., Eds., Moscow: Mosk. Gos. Univ., 1994.

    Google Scholar 

  24. Garmskiy geofizicheskiy poligon (Garm Geophysical Test Site), Sidorin, A.Ya., Ed., Moscow: Nauka, 1990.

    Google Scholar 

  25. Lukk, A.A., Descherevsky, A.V., Sidorin, A.Ya., and Sidorin, I.A., Variatsii geofizicheskikh poley kak proyavleniye determinirovannogo khaosa vo fraktal’noy srede (Variations of Geophysical Fields as a Manifestation of Deterministic Chaos in a Fractal Environment), Moscow: Ob”edinennyi Inst. Fiz. Zemli Ross. Akad. Nauk, 1996.

  26. Ostashevsky, M.G. and Sidorin, A.Ya., Apparatura dlya dinamicheskoy geoelektriki (Equipment for Dynamic Geoelectrics), Moscow: Inst. Fiz. Zemli Akad. Nauk SSSR, 1990.

  27. Ostashevsky, M.G., Sidorin, A.Ya., Multifunctional electrical sounding station and the results of its use, Kompleksnye issledovaniya po prognozu zemletryasenii (Comprehensive Research on Earthquake Prediction), Sadovsky, M.A., Ed., Moscow: Nauka, 1991, pp. 182–199.

    Google Scholar 

  28. Sidorin, A.Ya., Variations in the electrical resistivity of the upper layer of the Earth’s crust, Dokl. Acad. Nauk USSR, 1984, vol. 278, no. 2, pp. 330–334.

    Google Scholar 

  29. Sidorin, A.Ya., Results of precision observations of variations in apparent resistivity at the Garm test site, Dokl. Akad Nauk SSSR, 1986, vol. 290, no. 1, pp. 81–84.

    Google Scholar 

  30. Sidorin, A.Ya., Predvestniki zemletryaseniy (Earthquake Precursors), Moscow: Nauka, 1992.

  31. Yakubovski, Yu.V., Elektrorazvedka. Uchebnik dlya vuzov (Electrical Exploration: Textbook for Universities), Moscow: Nedra, 1980.

Download references

Funding

The study was carried out under the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, topic no. FMWU-2022-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Sidorin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Hannibal

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobachev, A.A., Deshcherevskii, A.V. & Sidorin, A.Y. Regularization of the Solution of the Inverse VES Problem by the Contrast Stabilization Method: Testing the Algorithm on Model Data. Seism. Instr. 58, 581–600 (2022). https://doi.org/10.3103/S074792392205005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S074792392205005X

Keywords:

Navigation