Skip to main content
Log in

Riboswitch: Ancient living switch for gene regulation

  • Review
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Since last two decades, the role of structural fluctuations of RNA molecules have emerged as one of the key aspects for gene expression in bacteria and they have been found to play very crucial roles for survival of bacteria under highly fluctuating environmental conditions. Riboswitches are one of the RNA elements located in the 5′ region of bacterial mRNA controlling the expression of a gene located downstream to it, by conformational changes of its own upon selective binding to ligands. These molecular fossils are probably the most ancient regulatory system for gene expression. Association of riboswitches with bacterial pathogenesis and other related functions has attracted their exploitation as potential drug targets. Natural as well as synthetic riboswitches hold considerable potential to be the next generation gene control systems to be used in the field of molecular biology and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garst, A.D. and Batey, R.D., A switch in time: detailing the life of a riboswitch, Biochim. Biophys. Acta, 2009, vol. 1789, nos. 9–10, pp. 584–591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sorek, R., Kunin, V., and Hugenholtz, P., CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea, Nat. Rev. Microbiol., 2008, vol. 6, pp. 181–186.

    Article  CAS  PubMed  Google Scholar 

  3. Waters, L.S. and Storz, G., Regulatory RNAs in bacteria, Cell, 2009, vol. 136, pp. 615–628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Winkler, W.C. and Breaker, R.R., Genetic control by metabolite-binding riboswitches, Chem. Biochem., 2003, vol. 4, pp. 1024–1032.

    CAS  Google Scholar 

  5. Nudler, E. and Mironov, A.S., The riboswitch control of bacterial metabolism, Trends. Biochem. Sci., 2004, vol. 29, pp. 11–17.

    Article  CAS  PubMed  Google Scholar 

  6. Tucker, B.J. and Breaker, R., Riboswitches as versatile gene control elements, Curr. Opin. Struct. Biol., 2005, vol. 15, pp. 342–348.

    Article  CAS  PubMed  Google Scholar 

  7. Winkler, W.C., Riboswitches and the role of non-coding RNAs in bacterial metabolic control, Curr. Opin. Chem. Biol., 2005, vol. 9, pp. 594–602.

    Article  CAS  PubMed  Google Scholar 

  8. Barrick, J.E. and Breaker, R., The distributions, mechanisms and structures of metabolite binding riboswitches, Genome Biol., 2007, vol. 8, pp. 11–19.

    Article  Google Scholar 

  9. Rodionov, D.A., Mironov, A.A., and Gelfand, M.S., Conservation of the biotin regulon and the BirA regulatory signal in eubacteria and archaea, Genome Res., 2002, vol. 12, pp. 1507–1516.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., and Gelfand, M.S., Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes, J. Biol. Chem., 2003, vol. 278, pp. 41148–41159.

    Article  CAS  PubMed  Google Scholar 

  11. White, H.B., Coenzymes as fossils of an earlier metabolic state, J. Mol. Evol., 1976, vol. 7, pp. 101–104.

    Article  CAS  PubMed  Google Scholar 

  12. Yin, J.Q. and Wan, Y., RNA-mediated gene regulation system: now and the future, Int. J. Mol. Med., 2012, vol. 10, pp. 355–365.

    Google Scholar 

  13. Lioliou, E., Romilly, C., Romby, P., and Fechter, P., RNA-mediated regulation in bacteria: from natural to artificial systems, Biotechnol. Annu. Rev., 2010, vol. 27, pp. 222–235.

    CAS  Google Scholar 

  14. Hiz, M.M. and Aki, C., Gene regulation control by RNA, Ann. Biol. Res., 2012, vol. 3, pp. 5119–5126.

    CAS  Google Scholar 

  15. Costa, M. and Michel, F., Frequent use of the same tertiary motif by self-folding RNAs, EMBO J., 1995, vol. 14, pp. 1276–1285.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., and Doudna, J.A., Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 1996, vol. 273, pp. 1678–1685.

    Article  CAS  PubMed  Google Scholar 

  17. Williamson, J.R., Induced fit in RNA-protein recognition, Nature. Struct. Biol., 2000, vol. 7, pp. 834–837.

    Article  CAS  PubMed  Google Scholar 

  18. Tuerk, C. and Gold, L., Systematic evolution of ligands by exponential enrichment RNA ligands to bacteriophage T4 DNA polymerase, Science, 1990, vol. 149, pp. 505–510.

    Article  Google Scholar 

  19. Robertson, D.L. and Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single stranded DNA, Nature, 1990, vol. 344, pp. 467–468.

    Article  CAS  PubMed  Google Scholar 

  20. Ellington, A.D. and Szostak, J.W., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, vol. 346, pp. 818–822.

    Article  CAS  PubMed  Google Scholar 

  21. Soukup, G.A. and Breaker, R.R., Engineering precision RNA molecular switches, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 3584–3589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Soukup, G.A. and Breaker, R.R., Allosteric nucleic acid catalysts, Curr. Opin. Struct. Biol., 2000, vol. 10, pp. 318–325.

    Article  CAS  PubMed  Google Scholar 

  23. Lundrigan, M.D., Koster, W., and Kadner, R.J., Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, pp. 1479–1483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nou, X. and Kadner, R.J., Adenosylcobalamin inhibits ribosome binding to btuB RNA, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 7190–7195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mironov, A.S., Gusarov, I., Rafikov, R., Lopez, L.E., Shatalin, K., Kreneva, R.A., Perumov, D.A., and Nudler, E., Sensing small molecules by nascent RNA: a mechanism to control transcription in Bacteria, Cell, 2002, vol. 111, pp. 747–756.

    Article  CAS  PubMed  Google Scholar 

  26. Regulski and Breaker, R., In-line probing analysis of riboswitches, in Post-Transcriptional Gene Regulation Methods in Molecular Biology, Wilusz, J., Ed., Humana Press, 2008, vol. 419, pp. 53–67.

    Article  CAS  Google Scholar 

  27. Winkler, W.C. and Breaker, R., Regulation of bacterial gene expression by riboswitches, Annu. Rev. Microbiol., 2005, vol. 59, pp. 487–517.

    Article  CAS  PubMed  Google Scholar 

  28. Breaker, R., Complex riboswitches, Science, 2008, vol. 319, pp. 1795–1797.

    Article  CAS  PubMed  Google Scholar 

  29. Breaker, R., Riboswitches and the RNA World, Cold Spring Harb. Perspect. Biol., 2012, vol. 4, p. 003566.

    Article  Google Scholar 

  30. Carona, M., Basteta, L., Lussiera, A., Simoneau-Roya, M., Masséb, M., and Lafontaine, D.A., Dualacting riboswitch control of translation initiation and mRNA decay, Proc. Nat. Acad. Sci U.S.A., 2012, vol. 109, pp. 3444–3453.

    Article  Google Scholar 

  31. Fauzia, H., Agyeman, A., and Hinesa, J.V., T box transcription antitermination riboswitch: Influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element, Biochim. Biophys. Acta, 2009, vol. 1789, pp. 185–191.

    Article  Google Scholar 

  32. Garst, A.D., Heroux, A., Rambo, R.P., and Batey, R.T., Crystal structure of the lysine riboswitch regulatory mRNA element, J. Biol. Chem., 2008, vol. 283, pp. 22347–22351.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Draper, D.E., Grilley, D., and Soto, A.M., Ions and RNA folding, Annu. Rev. Biophys. Biomol. Struct., 2005, vol. 34, pp. 221–243.

    Article  CAS  PubMed  Google Scholar 

  34. Woodson, S.A., Metal ions and RNA folding: a highly charged topic with a dynamic future, Curr. Opin. Chem. Biol., 2005, vol. 9, pp. 104–109.

    Article  CAS  PubMed  Google Scholar 

  35. Serganov, A., Huang, L., and Patel, D.J., Structural insights into amino acid binding and gene control by a lysine riboswitch, Nature, 2008, vol. 455, pp. 1263–1267.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lang, K., Rieder, R., Micura, R., Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach, Nucleic Acids Res., 2007, vol. 35, pp. 5370–5378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Montange, R.K. and Batey, R.T., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element, Nature, 2006, vol. 441, pp. 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  38. Thore, S., Leibundgut, M., and Ban, N., Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand, Science, 2006, vol. 312, pp. 1208–1211.

    Article  CAS  PubMed  Google Scholar 

  39. Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R., and Patel, D.J., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch, Nature, 2006, vol. 441, pp. 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  40. Klein, D.J., and Ferre-D’Amare, A.R., Structural Basis of glmS ribozyme activation by glucosamine-6-phosphate, Science, 2006, vol. 313, pp. 1752–1756.

    Article  CAS  PubMed  Google Scholar 

  41. Cochrane, J.C., Lipchock, S.V., and Strobel, S.A., Structural investigation of the glmS ribozyme bound to its catalytic cofactor, Chem. Biol., 2007, vol. 14, pp. 97–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Batey, R.T., Gilbert, S.D., and Montange, R.K., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine, Nature, 2004, vol. 432, pp. 411–415.

    Article  CAS  PubMed  Google Scholar 

  43. Serganov, A., Yuan, Y.R., Pikovskaya, O., Malinina, L., Phan, A.T., Hobartner, C., Micura, R., Breaker, R.R., and Patel, D.J., Structural basis for discriminative regulation of gene expression by adenine- and guaninesensing mRNAs, Chem. Biol., 2004, vol. 11, pp. 1729–1741.

    Article  CAS  PubMed  Google Scholar 

  44. Edwards, T.E. and Ferre-D’Amare, A.R., Crystal structures of the Thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition, Structure, 2006, vol. 14, pp. 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  45. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B., and Steitz, T.A., RNA tertiary interactions to the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 4899–4903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Noeske, J., Buck, J., Furtig, B., Nasiri, H.R., Schawalbe, H., and Wohnert, J., Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch, Nucleic Acids Res., 2007, vol. 35, pp. 572–583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Collins, J.A., Irnov, I., Baker, S., and Winkler, W.C., Mechanism of mRNA destabilization by the glmS ribozyme, Genes Dev., 2007, vol. 24, pp. 3356–3368.

    Article  Google Scholar 

  48. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A., and Breaker, R.R., Control of gene expression by a natural metabolite-responsive ribozyme, Nature, 2004, vol. 428, pp. 281–286.

    Article  CAS  PubMed  Google Scholar 

  49. Lee, E.R., Baker, J.L., Weinberg, Z., Sudarsan, N., and Breaker, R.R., An allosteric self-splicing ribozyme triggered by a bacterial second messenger, Science, 2010, vol. 329, pp. 845–848.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, A.G.Y., Sudarsan, N., and Breaker, R., Mechanism for gene control by a natural allosteric group I ribozyme, RNA, 2011, vol. 17, pp. 1967–1972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Mandal, M. and Breaker, R., Adenine riboswitches and gene activation by disruption of a transcription terminator, Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 29–35.

    Article  CAS  PubMed  Google Scholar 

  52. Winkler, W.C., Cohen-Chalamish, S., and Breaker, R., An mRNA structure that controls gene expression by binding FMN, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 15908–15913.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. McDaniel, B.A., Grundy, F.J., Artsimovitch, I., and Henkin, T.M., Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 3083–3088.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C., and Breaker, R.R., Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria, Cell, 2003, vol. 113, pp. 577–586.

    Article  CAS  PubMed  Google Scholar 

  55. Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., and Gelfand, M.S., Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation, Nucleic Acids Res., 2002, vol. 30, pp. 3141–3151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Roth, A. and Breaker, R.R., The structural and functional diversity of metabolite binding, Annu. Rev. Biochem., 2009, vol. 78, pp. 305–334.

    Article  CAS  PubMed  Google Scholar 

  57. Ciampi, M.S., Rho-dependent terminators and transcription termination, Microbiology, 2006, vol. 152, pp. 2515–2528.

    Article  CAS  PubMed  Google Scholar 

  58. Winkler, W.C., Nahvi, A., and Breaker, R.R., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, 2002, vol. 419, pp. 952–956.

    Article  CAS  PubMed  Google Scholar 

  59. Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J.K., and Breaker, R.R., New motifs suggest an expanded scope for riboswitches in bacterial genetic control, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 6421–6426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Nahvi, A., Sudarsan, N., Evert, M.S., Zou, X., Brown, K.L., and Breaker, R.R., Genetic control by a metabolite binding mRNA, Chem. Biol., 2002, vol. 9, pp. 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  61. Epshtein, V., Mironov, A.S., and Nudler, E., The riboswitch-mediated control of sulfur metabolism in bacteria, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 5052–5056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E., and Breaker, R.R., An mRNA structure that controls gene expression by binding S-adenosylmethionine, Nat. Struct. Biol., 2003, vol. 10, pp. 701–707.

    Article  CAS  PubMed  Google Scholar 

  63. Grundy, F.J., Lehman, S.C., and Henkin, T.M., The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 12057–12062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sudarsan, N., Wickiser, J.K., Nakamura, S., Evert, M.S., and Breaker, R.R., An mRNA structure in bacteria that controls gene expression by binding lysine, Genes Dev., 2003, vol. 17, pp. 2688–2697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Mandal, M., Lee, M., Barrick, J.E., Weinberg, Z., Emillson, G.M., Ruzzo, W.L., and Breaker, R., A Glycine dependent riboswitch that uses cooperative binding to control gene expression, Science, 2004, vol. 306, pp. 275–279.

    Article  CAS  PubMed  Google Scholar 

  66. Dixon, N., Duncan, J.N., Geerlings, T., Dunstan, M.S., McCarthy, J.E.G., Leys, D., and Micklefield, J., Reengineering orthogonally selected riboswitches, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 2830–2835.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Tang, J. and Breaker, R., Rational design of allosteric ribozymes, Chem. Biol., 1997, vol. 4, pp. 453–459.

    Article  CAS  PubMed  Google Scholar 

  68. Winkler, W.C. and Breaker, R.R., Regulation of bacterial gene expression by riboswitches, Annu. Rev. Microbiol., 2005, vol. 59, pp. 487–517.

    Article  CAS  PubMed  Google Scholar 

  69. Verhouning, A., Karcher, D., and Bock, R., Inducible gene expression from the plastid genome by a synthetic riboswitch, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 6204–6209.

    Article  Google Scholar 

  70. Thompson, K.M., Syrett, H.A., Knudsen, S.M., and Ellington, A.D., Group I aptazymes as genetic regulatory switches, BMC Biotechnol., 2002, vol. 2, p. 21.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Yen, L., Svendsen, J., Lee, J.S., Gray, J.T., Magnier, M., D’Amato, R.J., and Mulligan, R.C., Exogenous control of mammalian gene expression through modulation of RNA self-cleavage, Nature, 2004, vol. 431, pp. 471–476.

    Article  CAS  PubMed  Google Scholar 

  72. Mulhbacher, J. and Lafontaine, D., Ligand recognition determinants of guanine riboswitches, Nucleic Acids Res., 2007, vol. 35, pp. 5568–5580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ott, E., Stolz, J., Lehmann, M., and Mack, M., The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis, RNA Biol., 2009, vol. 6, pp. 276–280.

    Article  CAS  PubMed  Google Scholar 

  74. Serganov, A., Huang, L., and Patel, D.J., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch, Nature, 2009, vol. 458, pp. 233–237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Gerdeman, M.S., Henkin, T.M., and Hines, J.V., Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility, J. Mol. Biol., 2003, vol. 326, pp. 189–201.

    Article  CAS  PubMed  Google Scholar 

  76. Durbin, R., Eddy, S.R., Krogh, A., and Mitchison, G., Biological Sequence Analysis, Ch. 10.3: Covariance models: SCFG-Based RNA Profiles, Cambridge University Press, 1998.

    Google Scholar 

  77. Eddy, S.R., A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure, BMC Bioinformatics, 2002, vol. 3, p. 18.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Singh, P., Bandyopadhyay, P., Bhattacharya, S., Krishnamachari, A., and Sengupta, S., Riboswitch Detection Using Profile Hidden Markov Models, BMC Bioinformatics, 2009, vol. 10, pp. 1–13.

    Article  CAS  Google Scholar 

  79. Corbino, K.A., Barrick, J.E., Lim, J., Welz, R., Tucker, B.J., Puskarz, I., Mandal, M., Rudnick, N.D., and Breaker, R.R., Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alphaproteobacteria, Genome Biol., 2005, vol. 6, p. 70.

    Article  Google Scholar 

  80. Wang, J.X., Lee, E.R., Morales, D.R., Lim, J., and Breaker, R.R., Riboswitchers that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling, Mol. Cell., 2008, vol. 29, pp. 691–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Roth, A., Winkler, W.C., Regulski, E.E., Lee, B.W.K., Lim, J., Jona, I., Barrick, J.E., Ritwik, A., Kim, J.N., Welz, R., Iwata-Reuyl, D., and Breaker, R.R., A riboswitchers selective for the queuosine precursor preQ1 contains an unusually small aptamer domain, Nat. Struct. Mol. Biol., 2007, vol. 14, pp. 308–312.

    Article  CAS  PubMed  Google Scholar 

  82. Cromie, M.J., Shi, Y., Latifi, T., and Groisman, E.A., An RNA sensor for intracellular Mg2+, Cell, 2006, vol. 125, pp. 71–84.

    Article  CAS  PubMed  Google Scholar 

  83. Sudarsan, N., Lee, E.R., Weinberg, Z., Moy, R.H., Kim, J.N., Link, K.H., and Breaker, R.R., Riboswitches in eubacteria sense the second messenger cyclic di-GMP, Science, 2008, vol. 321, pp. 411–413.

    Article  CAS  PubMed  Google Scholar 

  84. Bengert, P. and Dandekar, T., Riboswitch finder—a tool for identification of riboswitch RNAs, Nucleic Acids Res., 2004, vol. 32, pp. 154–159.

    Article  Google Scholar 

  85. Abreu-Goodger, C. and Merino, E., RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements, Nucleic Acids Res., 2005, vol. 33, pp. 690–692.

    Article  Google Scholar 

  86. Chang, T.H., Wu, L.C., Yeh, C.T., Liu, B.J., Huang, H.D., and Horng, J.T., Computational Identification of riboswitches based on RNA conserved functional sequences and conformations, RNA, 2009, vol. 15, pp. 1426–1430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ray.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S., Chakdar, H. Riboswitch: Ancient living switch for gene regulation. Mol. Genet. Microbiol. Virol. 29, 227–239 (2014). https://doi.org/10.3103/S0891416814040090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416814040090

Keywords

Navigation