Skip to main content
Log in

Behavior of Triuranium Disilicide in Water Vapor

  • Published:
Steel in Translation Aims and scope

Abstract

Corrosion resistance of U3Si2 in water vapor is insufficient and increases due to fragmentation caused by formation of the hydride phase. In the present work, samples of triuranium disilicide were tested in an autoclave chamber in the water vapor medium from 350 to 600°C in the presence of a zirconium alloy which is an efficient hydrogen absorber. The dependence of the corrosion rate on the temperature was considered. The order of formation of oxide layers was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. White, J.T., Nelson, A.T., Dunwoody, J.T., Byler, D.D., Safarik, D.J., and McClellan, K.J., Thermophysical properties of U3Si2 to 1773 K, J. Nucl. materials, 2015, vol. 464, pp. 275–280. https://doi.org/10.1016/j.jnucmat.2015.04.031

    Article  ADS  CAS  Google Scholar 

  2. Metzger, K.E., Knight, T.W., and Williamson, R.L., Model of U3Si2 fuel system using BISON fuel code, Report no. INL/CON-13-30445,, Idaho National Laboratory (INL), 2014.

  3. Middleburgh, S.C., Grimes, R.W., Lahoda, E.J., Stanek, C.R., and Andersson, D.A., Non-stoichiometry in U3Si2, J. Nucl. Mater., 2016, vol. 482, pp. 300–305. https://doi.org/10.1016/j.jnucmat.2016.10.016

    Article  ADS  CAS  Google Scholar 

  4. Wood, E.S., White, J.T., and Nelson, A.T., Oxidation behavior of U–Si compounds in air from 25 to 1000°C, J. Nucl. Mater., 2017, vol. 484, pp. 245–257. https://doi.org/10.1016/j.jnucmat.2016.12.016

    Article  ADS  CAS  Google Scholar 

  5. Wood, E.S., White, J.T., Grote, C.J., and Nelson, A.T., U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen, J. Nucl. Mater., 2018, vol. 501, pp. 404–412. https://doi.org/10.1016/j.jnucmat.2018.01.002

    Article  ADS  CAS  Google Scholar 

  6. Nelson, A.T., Migdisov, A., Wood, E.S., and Grote, C.J., U3Si2 behavior in H2O environments: Part II, pressurized water with controlled redox chemistry, J. Nucl. Mater., 2018, vol. 500, pp. 81–91. https://doi.org/10.1016/j.jnucmat.2017.12.026

    Article  ADS  CAS  Google Scholar 

  7. Große, M., Steinbrück, M., and Stuckert, J., Steam and air oxidation behavior of nuclear fuel claddings at severe accident conditions, MRS Proc., 2010, vol. 1264, p. 404. https://doi.org/10.1557/proc-1264-bb04-04

  8. Johnson, K., Ström, V., Wallenius, J., and Lopes, D.A., Oxidation of accident tolerant fuel candidates, J. Nucl. Sci. Technol., 2017, vol. 54, no. 3, pp. 280–286. https://doi.org/10.1080/00223131.2016.1262297

    Article  CAS  Google Scholar 

  9. White, J.T. et al., State of knowledge and challenges of U–Si compounds for use in light water reactor accident tolerant fuel designs, TopFuel, Boise, Idaho: American Nuclear Society, 2016, pp. 1367–1374.

    Google Scholar 

  10. Gong, B., Yao, T., Lei, P., Harp, J., Nelson, A.T., and Lian, J., Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties, J. Alloys Compd., 2020, vol. 825, p. 154022. https://doi.org/10.1016/j.jallcom.2020.154022

    Article  CAS  Google Scholar 

  11. Mašková, S., Miliyanchuk, K., and Havela, L., Hydrogen absorption in U3Si2 and its impact on electronic properties, J. Nucl. Mater., 2017, vol. 487, pp. 418–423. https://doi.org/10.1016/j.jnucmat.2017.02.036

    Article  ADS  CAS  Google Scholar 

  12. Shivprasad, A.P., Kocevski, V., Ulrich, T.L., Wermer, J.R., Andersson, D.A., and White, J.T., The U3Si2–H system, J. Nucl. Mater., 2022, vol. 558, p. 153278. https://doi.org/10.1016/j.jnucmat.2021.153278

    Article  CAS  Google Scholar 

  13. Zhong, Yu. and Macdonald, D.D., Thermodynamics of the Zr–H binary system related to nuclear fuel sheathing and pressure tube hydriding, J. Nucl. Mater., 2012, vol. 423, nos. 1–3, pp. 87–92. https://doi.org/10.1016/j.jnucmat.2012.01.016

    Article  ADS  CAS  Google Scholar 

  14. Barrow, A.T.W., Toffolon-Masclet, C., Almer, J., and Daymond, M.R., The role of chemical free energy and elastic strain in the nucleation of zirconium hydride, J. Nucl. Mater., 2013, vol. 441, nos. 1–3, pp. 395–401. https://doi.org/10.1016/j.jnucmat.2013.06.013

    Article  ADS  CAS  Google Scholar 

  15. Welland, M.J. and Hanlon, S.M., Prediction of the zirconium hydride precipitation barrier with an anisotropic 3D phase-field model incorporating bulk thermodynamics and elasticity, Comput. Mater. Sci., 2020, vol. 171, p. 109266. https://doi.org/10.1016/j.commatsci.2019.109266

    Article  CAS  Google Scholar 

  16. Zuzek, E., Abriata, J.P., San-Martin, A., and Manchester, F.D., The H–Zr (hydrogen–zirconium) system, Bull. Alloy Phase Diagrams, 1990, vol. 11, no. 4, pp. 385–395. https://doi.org/10.1007/bf02843318

    Article  CAS  Google Scholar 

  17. Rukosuev, V.E., Triuranium disilicide as a perspective nucleaer fuel, XXII Mezhdunarodnaya konferentsiya molodykh spetsialistov po yadernym energeticheskim ustanovkam (22nd Int. Conf. of Young Specialists on Nuclear Power Facilities), Podolsk, Moscow oblast: Gidropress, 2022, pp. 220–225.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Rukosuev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Efimov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukosuev, V.E., Shornikov, D.P., Tenishev, A.V. et al. Behavior of Triuranium Disilicide in Water Vapor. Steel Transl. 53, 915–921 (2023). https://doi.org/10.3103/S0967091223110268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223110268

Keywords:

Navigation