Skip to main content
Log in

Mathematical simulation of temperature field control of the strapdown inertial navigation system based on optical fiber sensors

  • Automation and Control in Manufacturing
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Mathematical models of an active double loop reversible temperature control system based on thermoelectric Peltier modules for controlling temperature fields of individual fiber optic inertial sensors, and the strapdown inertial navigation system containing these sensors, are constructed and investigated. The supporting software is developed. Parameters of the temperature control system are selected. The performance of dynamic systems under severe temperature conditions is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fiber Optic Sensors: an Introduction for Engineers and Scientists, Udd, E., Ed., Wiley, 1991.

    Google Scholar 

  2. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., et al., Fiber-optic gyroscope of navigation class of accuracy, XIV S.-Peterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam (Proc. 14th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, 2007, pp. 141–150.

    Google Scholar 

  3. Kolevatov, A.P., Nikolaev, S.G., Andreev, A.G., et al., Achievements in strap down inertial navigation systems development on the base of fiber-optical gyroscopes, XVI S.-Peterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam (Proc. 16th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, 2009, pp. 13–20.

    Google Scholar 

  4. Meshkovskii, I.K., Strigalev, V.E., Deineka, G.B., et al., Three-axes fiber-optic gyroscope. Design results, XVIII S.-Peterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam (Proc. 18th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, 2011, pp. 8–14.

    Google Scholar 

  5. Lefevr, E.K., Fiber-optic gyroscope: achievements and trends, Giroskop. Navig., 2012, no. 4(79), pp. 3–9.

    Google Scholar 

  6. Dranitsyna, E.V., Egorova, D.A., Untilov, A.A., et al., Effect of temperature lowing for an output signal of fiberoptic gyroscope, Giroskop. Navig., 2012, no. 4(79), pp. 10–20.

    Google Scholar 

  7. Dzhashitov, V.E. and Pankratov, V.M., Datchiki, pribory i sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii (Sensors, Instruments and Systems for Aerospace and Sea Instrument Making under Heat Impact), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, 2005.

    Google Scholar 

  8. Dzhashitov, V.E., Pankratov, V.M., Golikov, A.V., et al., Obshchaya i prikladnaya teoriya giroskopov s primeneniem komp’yuternykh tekhnologii (General and Applied Gyroscope Theory by Using Computer Technologies), St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, 2010.

    Google Scholar 

  9. Dzhashitov, V.E., Pankratov, V.M., Golikov, A.V., et al., The way to provide thermoinvarianticity of fiber-optic gyroscope, Giroskop. Navig., 2011, no. 4(75), pp. 42–56.

    Google Scholar 

  10. Dzhashitov, V.E., Pankratov, V.M., Golikov, A.V., et al., Hierarchical thermal models of platform free inertial navigational system with fiber-optic gyroscopes and accelerometers, in Giroskop. Navig., 2013, no. 1(80), pp. 49–63.

    Google Scholar 

  11. Ingberman, M.I., Fromberg, E.M., and Graboi, L.P., Termostatirovanie v tekhnike svyazi (Thermostatic Control in Communication Technique), Moscow: Svyaz’, 1979.

    Google Scholar 

  12. Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Metody rascheta teplovogo rezhima priborov (The Way to Calculate Instruments Heat Conditions), Moscow: Radio i svyaz’, 1990.

    Google Scholar 

  13. Dzhashitov, V.E., Pankratov, V.M., and Barulina, M.A., Mathematical models of thermal stress-strain state and scale factor error of fiber optic gyro sensors, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 2, p. 124.

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.E. Dzhashitov, V.M. Pankratov, A.V. Golikov, 2014, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2014, No. 1, pp. 92–100.

About this article

Cite this article

Dzhashitov, V.E., Pankratov, V.M. & Golikov, A.V. Mathematical simulation of temperature field control of the strapdown inertial navigation system based on optical fiber sensors. J. Mach. Manuf. Reliab. 43, 75–81 (2014). https://doi.org/10.3103/S105261881401004X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S105261881401004X

Navigation