Skip to main content
Log in

Changes in the microstructure and mechanical properties of nanomaterials under an ultrasonic wave effect

  • New Technologies in Manufacturing
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

A model of the relaxation of the nonequilibrium structure of grain boundaries in bulk nanomaterials, which are produced by deformation methods, under an ultrasonic wave effect is proposed. Changes in the microstructure and the mechanical properties of nanostructured nickel produced by torsion under quasi-hydrostatic pressure and equal-channel angular pressing are experimentally studied. It has been shown that, at some moderate values of the amplitude, the ultrasonic effect leads to a decrease in internal stresses, as well as an increase in the thermal stability of the structure and the ductility of the nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noskova, N.I. and Mulyukov, R.R., Submikrokristallicheskie i nanokristallicheskie metally i splavy (Submicrocrystalline and Nanocrystalline Metals and Alloys), Yekaterinburg: Ural Branch RAS, 2003.

    Google Scholar 

  2. Nazarov, A.A. and Mulyukov, R.R., Nanostructured materials, in Nanoscience, Engineering and Technology Handbook, Boca Raton, FL: CRC Press, 2002, pp. 22-1–22-41.

    Google Scholar 

  3. Abramov, O.V., Kristallizatsiya metallov v ul’trazvukovom pole (Metals Crystallization in Ultrasonic Field), Moscow, 1972.

    Google Scholar 

  4. Severdenko, V.P., Klubovich, V.V., and Stepanenko, A.V., Obrabotka metallov davleniem s ul’trazvukom (Metals Processing by Pressure and Ultrasound), Minsk: Nauka i tekhnika, 1973.

    Google Scholar 

  5. Severdenko, V.P., Klubovich, V.V., and Stepanenko, A.V., Ul’trazvuk i plastichnost’ (Ultrasound and Plasticity), Minsk: Nauka i tekhnika, 1976.

    Google Scholar 

  6. Klubovich, V.V. and Stepanenko, A.V., Ul’trazvukovaya obrabotka materialov (Ultrasound Processing for Materials), Minsk: Nauka i tekhnika, 1981.

    Google Scholar 

  7. Artem’ev, V.V., Klubovich, V.V., and Rubanik, V.V., Ul’trazvuk i obrabotka materialov (Ultrasound and Materials Processing), Minsk: Ekoperspektiva, 2003.

    Google Scholar 

  8. Klubovich, V.V., Rubanik, V.V., and Tsarenko, Yu.V., Electrothermal processing of steel wire in ultrasound field, in Perspektivnye materialy i tekhnologii (Promising Materials and Technologies), Vitebsk: Izd. Vitebsk State Technological Univ., 2008, chapter 6.

    Google Scholar 

  9. Klubovich, V.V., Artem’ev, V.V., and Sakevich, V.N., Ul’trazvukovye vibroudarnye protsessy (Ultrasonic Vibroelastic Processes), Minsk: Belorussian State National Univ., 2004.

    Google Scholar 

  10. Makarov, V.F. and Polovinkin, A.Kh., Ultrasonic surface strengthening of gas-turbine engine elements, Instrum. Tekhnol., 2006, no. 23, pp. 116–118.

    Google Scholar 

  11. Panin, A.V., Mel’nikova, E.A., Perevalova, O.B., et al., The way to form nanocrystalline structure in surface layers of EK-181 steel under ultrasonic processing, Fiz. Mezomekh., 2009, vol. 12, no. 2, pp. 83–93.

    Google Scholar 

  12. Polotskii, I.G., Nedoseka, A.Ya., Prokopenko, G.I., et al., The way to decrease residual welding tensions by means of ultrasonic processing, Avtomat. Svarka, 1974, no. 5, pp. 74–75.

    Google Scholar 

  13. Kulemin, A.V., Ul’trazvuk i diffuziya v metallakh (Ultrasound and Diffusion in Metals), Moscow: Metallurgiya, 1978.

    Google Scholar 

  14. Gindin, I.A., Volchok, O.I., and Neklyudov, I.M., Internal stresses relaxation in silicon ferrum under ultrasonic oscillations, Fiz. Tverd. Tela, 1975, vol. 17.

  15. Fedorova, L.R. and Kovalenko, N.P., Ultrasonic oscillation effect onto microstresses in deformed XI8HI0T steel, Metalloved. Termich. Obrab. Met., 1975, no. 3, pp. 69–71.

    Google Scholar 

  16. Tyapunina, N.A., Naimi, E.K., and Zinenkova, G.M., Deistvie ul’trazvuka na kristally s defektami (Ultrasound Effect onto Crystals with Defects), Moscow: Izd. MSU, 1999.

    Google Scholar 

  17. Belostotskii, V.F., Correlation between threshold amplitude under ultrasonic deformation and statistical yield point for metals, Fiz. Met. Metalloved., 1984, vol. 58, no. 6, pp. 1219–1221.

    Google Scholar 

  18. Nazarov, A.A. and Khannanov, Sh.Kh., Ultrasonic stimulation of polygonization process, Fiz. Khim. Obrab. Mater., 1986, no. 4, pp. 109–114.

    Google Scholar 

  19. Nazarov, A.A., Romanov, A.E., and Valiev, R.Z., Random declination ensembles in ultrafine-grained materials produced by severe plastic deformation, Scripta Mater., 1996, vol. 34, pp. 729–734.

    Article  Google Scholar 

  20. Nazarov, A.A., Ensembles of gliding grain boundary dislocations in ultrafine grained materials produced by severe plastic deformation, Scripta Mater., 1997, vol. 37, pp. 1155–1161.

    Article  Google Scholar 

  21. Rybin, V.B., Bol’shie plasticheskie deformatsii i razrushenie metallov (High Plastic Deformations and Metals Fracture), Moscow: Metallurgiya, 1986.

    Google Scholar 

  22. Zhang, P., Li, S.X., and Zhang, Z.F., General relationship between strength and hardness, Mater. Sci. Eng. A, 2011, vol. 529, pp. 62–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nazarov.

Additional information

Original Russian Text © A.A. Nazarov, A.A. Samigullina, R.R. Mulyukov, Yu.V. Tsarenko, V.V. Rubanik, 2014, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2014, No. 2, pp. 77–84.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, A.A., Samigullina, A.A., Mulyukov, R.R. et al. Changes in the microstructure and mechanical properties of nanomaterials under an ultrasonic wave effect. J. Mach. Manuf. Reliab. 43, 153–159 (2014). https://doi.org/10.3103/S1052618814020113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618814020113

Keywords

Navigation