Skip to main content
Log in

Novel approaches to solution-combustion synthesis of nanomaterials

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution-combustion is an attractive approach to synthesis of nanomaterials for a variety of applications, including catalysts, fuel cells, and biotechnology. In this paper, several novel methods based on the combustion of a reactive solution are presented. These methods include self-propagating sol-gel combustion and combustion of impregnated inert and active supports. It was demonstrated that, based on the fundamental understanding of the considered combustion processes, a variety of extremely high surface area materials could be synthesized. The controlling process parameters are defined and discussed. Examples of materials synthesized by the above methods are presented. For the first time, a continuous technology for production of nanopowders by using the solution combustion approach is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gleiter, H., Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, vol. 48, p. 1.

    Article  CAS  Google Scholar 

  2. Hellmig, R.J. and Ferkel, H., Using Nanoscaled Powders as an Additive in Coarse-Grained Powder, J. Am. Ceram. Soc., 2001, vol. 84, p. 261.

    Article  CAS  Google Scholar 

  3. Menzler, N.H., Lavergnat, D., Tietz, F., et al., Materials Synthesis and Characterization of 8YSZ Nanomaterials for the Fabrication of Electrolyte Membranes in SOFCs, Ceram. Int., 2003, vol. 29, p. 619.

    Article  CAS  Google Scholar 

  4. Keane, M.A., Ceramics for Catalysis, J. Mater. Sci., 2003, vol. 38, p. 4661.

    Article  CAS  Google Scholar 

  5. Pena, M.A. and Fierro, J.L.G., Chemical Structures and Performance of Perovskite Oxides, Chem. Rev., 2001, vol. 101, p. 1981.

    Article  CAS  Google Scholar 

  6. Biddlecombe, G.B., Gunko, Y.K., Kelly, J.M., Pillai, S.C., Corey, J.M.D., Venkatesan, M., and Douvalis, A.P., Preparation of Magnetic Nanoparticles and their Assemblies Using a New Fe(II) Alkoxide Precursor, J. Mater. Chem., 2001, vol. 11, p. 2937.

    Article  CAS  Google Scholar 

  7. Balaz, P., Godocikova, E., Krilova, L., Lobotka, P., and Gock, E., Preparation of Nanocrystalline Materials by High-Energy Milling, Mater. Sci. Eng., 2004, vol. 386, p. 442.

    Article  CAS  Google Scholar 

  8. Chen, C., Riman, R.E., TenHuisen, K.S., and Brown, K., Mechanochemical-Hydrothermal Synthesis of Hydroxyapatite from Nonionic Surfactant Emulsion Precursors, J. Cryst. Growth, 2004, vol. 270, p. 615.

    Article  CAS  Google Scholar 

  9. Cheng, P., Li, W., Liu, H., Gu, M., and Shangguah, W., Influence of Zinc Ferrite Doping on the Optical Properties and Phase Transformation of Titania Powders Prepared by Sol-Gel Method, Mater. Sci. Eng., 2004, vol. 386, p. 43.

    Article  CAS  Google Scholar 

  10. Choi, J.H., Park, K.W., Kwon, B.K., and Sung, Y.E., Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFC’s, J. Electrochem. Soc., 2003, vol. 150, p. A973.

    Article  CAS  Google Scholar 

  11. Vie, D., Martinez, E., Sapina, F., Folgado, J., and Beltran, A., Freeze-Dried Precursor-Based Synthesis of Nanostructured Cobalt-Nickel Molybdates Co1 − x NixMoO4, Chem. Mater., 2004, vol. 16, p. 1697.

    Article  CAS  Google Scholar 

  12. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.G., and Stucky, G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 1998, vol. 279, p. 548.

    Article  CAS  Google Scholar 

  13. Merzhanov, A.G. and Borovinskaya, I.P., Self-Propagating High-Temperature Synthesis of Refractory Inorganic Compounds, Dokl. Chem., 1972, vol. 204, p. 429.

    Google Scholar 

  14. Munir, Z.A. and Anselmi-Tamburini, U., Self-Propagating Exothermic Reactions: The Synthesis of High-Temperature Materials by Combustion, Mater. Sci. Rep., 1989, vol. 3, p. 277.

    Article  CAS  Google Scholar 

  15. Merzhanov, A.G., Solid Flames: Discovery, Concepts, and Horizons of Cognition, Combust. Sci. Tech., 1994, vol. 98, p. 307.

    CAS  Google Scholar 

  16. Moore, J.J. and Feng, H.J., Combustion Synthesis of Advanced Materials, Prog. Mater. Sci., 1995, vol. 39, p. 243.

    Article  CAS  Google Scholar 

  17. Hlavacek, V. and Puszynski, J., Chemical Engineering Aspects of Advanced Materials, Ind. Eng. Chem. Res., 1996, vol. 35, p. 349.

    Article  CAS  Google Scholar 

  18. Merzhanov, A.G., Worldwide Evolution and the Present Status of SHS as a Branch of Modern R and D, Int. J. SHS, 1997, vol. 6, p. 119.

    CAS  Google Scholar 

  19. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, p. 79.

    CAS  Google Scholar 

  20. Mukasyan, A.S., Lau, C., and Varma, A., Influence of Gravity on Combustion Synthesis of Advanced Materials, AIAA J., 2005, vol. 43, p. 225.

    Article  CAS  Google Scholar 

  21. Merzhanov, A.G., Borovinskaya, I.P., and Sytschev, A.E., SHS of Nanopowders, in Lessons in Nanotechnology from Traditional and Advanced Ceramics, Baumard, J.-F., Ed., Faenza (Italy): Techna Group Srl., 2005, pp. 191–218.

    Google Scholar 

  22. Kingsley, J.J., Suresh, K., and Patil, K.C., Combustion Synthesis of Fine-Particle Metal Aluminates, J. Mater. Sci., 1990, vol. 25, no. 2B, p. 1305.

    CAS  Google Scholar 

  23. Chick, L.A., Liu, J., Stevenson, J.W., Armstrong, T.R., et al., Phase Transitions and Transient Liquid-Phase Sintering in Calcium-Substituted Lanthanum Chromite, J. Am. Ceram. Soc., 1997, vol. 80, p. 2109.

    Article  CAS  Google Scholar 

  24. Patil, K., Aruna, S., and Ekambaram, S., Combustion Synthesis, Curr. Opin. Sol. State Mater. Sci., 1997, vol. 2, p. 158.

    Article  CAS  Google Scholar 

  25. Mukasyan, A.S., Costello, C., Sherlock, K., Lafarga, D., and Varma, A., Perovskite Membranes by Aqueous Combustion Synthesis: Synthesis and Properties, Separ. Purif. Tech., 2001, vol. 25, p. 117.

    Article  CAS  Google Scholar 

  26. Patil, K., Aruna, S., and Mimani, T., Combustion Synthesis: An Update, Curr. Opin. Sol. State Mater. Sci., 2003, vol. 6, p. 507.

    Article  CAS  Google Scholar 

  27. Varma, A., Mukasyan, A.S., Deshpande, K., Pranda, P., and Erii, P., Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties, Mat. Res. Soc. Symp. Proc., 2003, vol. 800, p. 113.

    CAS  Google Scholar 

  28. Deshpande, K., Mukasyan, A.S., and Varma, A., Direct Synthesis of Iron Oxide Nanopowders by Combustion Approach: Reaction Mechanism and Properties, Chem. Mater., 2004, vol. 16, no. 24, p. 4896.

    Article  CAS  Google Scholar 

  29. Pechini, M., Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent 3 330 697, 1967.

  30. Ravindranathanan, P. and Patil, K.C., A One-Step Process for the Preparation of γ-Fe2O3, J. Mater. Sci. Lett., 1986, vol. 5, p. 221.

    Article  Google Scholar 

  31. Xu, X.L., Guo, J.D., and Wang, Y.Z., A Novel Technique by the Citrate Pyrolysis for Preparation of Iron Oxide Nanoparticles, Mater. Sci. Eng. B, 2000, vol. 77, p. 207.

    Article  Google Scholar 

  32. Sivalingam, G., Priya, M.H., and Madras, G., Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2, Appl. Catal. B, 2004, vol. 51, no. 1, p. 67.

    Article  CAS  Google Scholar 

  33. Hwang, C.C., Wu, T.Y., Wan, J., and Tsai, J.S., Development of a Novel Combustion Synthesis Method for Synthesizing of Ceramic Oxide Powders, Mater. Sci. Eng. B, 2004, vol. 111, no. 1, p. 49.

    Article  CAS  Google Scholar 

  34. Bhaduri, S., Bhaduri, S.B., and Zhou, E., Auto Ignition Synthesis and Consolidation of Al2O3-ZrO2 Nano/Nano Composite Powders, J. Mater. Res., 1998, vol. 13, p. 156.

    CAS  Google Scholar 

  35. Rodriguez, S., Munichandriah, N., and Shukla, A.K., Novel Solution-combustion Synthesis of LiCoO2 and Its Characterization as Cathode Material for Lithium-Ion Cells, J. Power Sources, 2001, vol. 102, p. 322.

    Article  Google Scholar 

  36. Julien, C., Letranchant, C., Lemal, M., Ziolkiewicz, S., and Castro-Garcia, S., Layered LiNi1 − y CoyO2 Compounds Synthesized by a Glycine-Assisted Combustion Method for Lithium Batteries, J. Mater. Sci., 2002, vol. 37, p. 2367.

    Article  CAS  Google Scholar 

  37. Peng, C., Hong, C., and Chen, S.-Y., Preparation and Characterization of YBa2Cu3O7 − x Superconductor by means of a Novel Method Combining Sol-Gel and Combustion Synthesis Techniques, J. Mater. Sci., 2004, vol. 39, no. 12, p. 4057.

    Article  CAS  Google Scholar 

  38. Jalota, S., Tas, A.C., and Bhaduri, S.B., Microwave-Assisted Synthesis of Calcium Phosphate Nanowhiskers, J. Mater. Res., 2004, vol. 19, p. 1876.

    Article  CAS  Google Scholar 

  39. Muthuraman, M., Dhas, A.A., and Patil, K., Combustion Synthesis of Oxide for Nuclear Waste Immobilization, Bull. Mater. Sci., 1994, vol. 17, no. 6, p. 977.

    CAS  Google Scholar 

  40. Muthuraman, M. and Patil, K., Synthesis, Properties, Sintering, and Microstructure of Sphene, CaTiSiO5, Mater. Res. Bull., 1998, vol. 33, no. 4, p. 655.

    Article  CAS  Google Scholar 

  41. Aruna, S.T., Ghosh, S., and Patil, K.C., Combustion Synthesis and Properties of Ce1 − x PrxO2 − δ Red Ceramic Pigments, Int. J. Inorg. Mater., 2001, vol. 3, p. 387.

    Article  CAS  Google Scholar 

  42. Mukasyan, A., Epstein, P., and Dinka, P., Solution Combustion Synthesis of Nanomaterials, Proc. Combust. Inst., 2007, vol. 31, no. 2, p. 1789.

    Article  CAS  Google Scholar 

  43. Thiers, L., Mukasyan, A.S., and Varma, A., Thermal Explosion in Ni-Al System: Influence of Reaction Medium Microstructure, Comb. Flame, 2002, vol. 131, nos. 1–2, p. 198.

    Article  CAS  Google Scholar 

  44. Merzhanov, A.G. and Khaikin, B.I., Theory of Combustion Waves in Homogeneous Media, Prog. Energ. Combust. Sci., 1998, vol. 14, p. 1.

    Article  Google Scholar 

  45. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, p. 11 053.

    Article  CAS  Google Scholar 

  46. Twigg, M.V., Catalyst Handbook, Wolfe Publishing Ltd., 1989, 2nd ed.

  47. Alifanti, M., Blangenois, N., Florea, M., and Delmon, B., Supported Co-Based Perovskites as Catalysts for Total Oxidation of Methane, Appl. Catal. A, 2005, vol. 280, p. 255.

    Article  CAS  Google Scholar 

  48. Isupova, L.A., Alikina, G.M., Tsybulya, S.V., Salanov, A.N., Boldyreva, N.N., Rusina, E.S., Ovsyannikova, I.A., Rogov, V.A., Bunina R.V., and Sadykov, V.A., Honeycomb-Supported Perovskite Catalysts for High-Temperature Processes, Catal. Today, 2002, vol. 75, p. 305.

    Article  CAS  Google Scholar 

  49. Dinka, P. and Mukasyan, A., In Situ Preparation of the Supported Catalysts by Solution Combustion Synthesis, J. Phys. Chem., 2005, vol. 109, no. 46, p. 21 627.

    CAS  Google Scholar 

  50. Dinka, P. and Mukasyan, A., Perovskite Catalysts for the Auto-Reforming of Sulfur Containing Fuels, J. Power Sources, 2007, vol. 167, pp. 472–481.

    Article  CAS  Google Scholar 

  51. Lan, A. and Mukasyan, A., Novel Catalysts for Direct Ethanol Fuel Cells, Eurasian Chem.-Tech. J., 2007 (in press).

  52. Lan, A. and Mukasyan, A., Perovskite-Based Catalysts for Direct Methanol Fuel Cells, J. Phys. Chem., 2007 (in review).

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mukasyan, A.S., Dinka, P. Novel approaches to solution-combustion synthesis of nanomaterials. Int. J Self-Propag. High-Temp. Synth. 16, 23–35 (2007). https://doi.org/10.3103/S1061386207010049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386207010049

Key words

PACS numbers

Navigation