Skip to main content
Log in

Abstract

This paper overviews heterogeneous exothermic reactive systems as they apply to the joining of materials. Techniques that are investigated fall under two general schemes: so-called Volume Combustion Synthesis (VCS) and Self-Propagating High-Temperature Synthesis (SHS). Within the VCS scheme, applications that are considered include Reactive Joining (RJ), Reactive Resistance Welding (RRW), and Spark Plasma Sintering (SPS). Under the SHS scheme, Combustion Foil Joining (CFJ) and Conventional SHS (CCJ) are discussed. Analysis of the relevant works show significant potential, particularly for the RJ, RRW, and CFJ approaches, in the joining of a variety of materials which are difficult, or impossible, to bond using conventional techniques. More specifically, it is shown that these methods can be successfully applied to the joining of: (i) dissimilar materials such as ceramics and metals and (ii) refractory materials, such as graphite, carbon-carbon composites, W, Ta, Nb, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlert, W., Thermite Welding: Behaviour, Performance, and Examples, Z. Ver. Deutsch. Ing., 1939, vol. 83, pp. 515–518.

    Google Scholar 

  2. Allen, J.W., Olson, D.L., and Frost, R.H., Exothermically Assisted Shielded Metal Arc Welding, Weld. J., 1998, vol. 77, p. 277.

    Google Scholar 

  3. Meric, C. and Engez, T., Understanding the Thermite Welding Process, Weld. J., 1999, vol. 78, no. 1, pp. 33–36.

    CAS  Google Scholar 

  4. Meric, C., Atik, E., and Sahin, S., Mechanical and Metallurgical Properties of Welding Zone in Rail Welded via Thermite Process, Sci. Technol. Weld. Joining, 2002, vol. 7, no. 3, pp. 172–176.

    Article  CAS  Google Scholar 

  5. Munir, Z.A. and Anselmi-Tamburini, U., Self-Propagating Exothermic Reactions: The Synthesis of High-Temperature Materials by Combustion, Mater. Sci. Repts., 1989, vol. 3, p. 277.

    Article  CAS  Google Scholar 

  6. Moore, J.J. and Feng, H.J., Combustion Synthesis of Advanced Materials. II. Classification, Applications, and Modeling, Prog. Mater. Sci., 1995, vol. 39, nos. 4, 5, pp. 275–316.

    Article  CAS  Google Scholar 

  7. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Application, Adv. Chem. Eng., 1998, vol. 24, p. 79.

    CAS  Google Scholar 

  8. Miyamoto, Y., Nakamoto, T., Koizumi, M., and Yamada, O., Ceramic-to-Metal Welding by a Pressurized Combustion Reaction, J. Mater. Res., 1986, vol. 1, p. 7.

    Article  CAS  Google Scholar 

  9. Shcherbakov, V.A. and Shteinberg, A.S., SHS Welding of Refractory Materials, Int. J. SHS, 1993, vol. 2, p. 357.

    CAS  Google Scholar 

  10. Messler, R.W. and Orling, T.T., Joining by SHS, in Adv. Powder. Metall. Part. Mater., 1994, vol. 6, p. 273.

    Google Scholar 

  11. Uenishi, K., Sumi, H., and Kobayashi, K.F., Joining of the Intermetallic Compound TiAl Using Self-Propagating High-Temperature Synthesis Reaction, Z. Metallkd., 1995, vol. 86, no. 1, pp. 64–68.

    CAS  Google Scholar 

  12. Matsuura, K., Kudoh, M., Oh, J.H., Kirihara, S., and Miyamoto, Y., Development of Freeform Fabrication of Intermetallic Compounds, Scr. Mater., 2001, vol. 44, no. 3, pp. 539–544.

    Article  CAS  Google Scholar 

  13. Pascal, C., Marin-Ayral, R.M., and Tedenac, J.C., Joining of Nickel Monoaluminide to a Superalloy Substrate by High Pressure Self-Propagating High-Temperature Synthesis, J. Alloys Compd., 2002, vol. 337, nos. 1, 2, pp. 221–225.

    Article  CAS  Google Scholar 

  14. Shteinberg, A.S., Merzhanov, A.G., Borovinskaya, I.P., Kochetov, O.A., Ulibin, V.B., and Shipov, V.V., USSR Inventor’s Certificate 747 661, 1980.

  15. Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M., and Weihs, T.P., Joining of Stainless-Steel Specimens with Nanostructured Al/Ni Foils, J. Appl. Phys., 2004, vol. 95, no. 1, pp. 248–256.

    Article  CAS  Google Scholar 

  16. Thiers, L., Mukasyan, A.S., and Varma, A., Thermal Expolsion in Ni-Al System: Influence of Reaction Medium Microstructure, Combust. Flame, 2002, vol. 131, nos. 1, 2, pp. 198–209.

    Article  CAS  Google Scholar 

  17. Shcherbakov, V.A., SHS Welding of Hard Alloy and Steel, Key Eng. Mater., 2002, vol. 217, pp. 215–218.

    Article  CAS  Google Scholar 

  18. Shteinberg, A.S., and Knyazik, V.A., Macrokinetics of High-Temperature Heterogeneous Reactions: SHS Aspects, Pure Appl. Chem., 1992, vol. 64, no. 7, pp. 965–976.

    CAS  Google Scholar 

  19. White, J.D.E., Mukasyan, A.S., La Forest, M.L., and Simpson, A.H., Novel Apparatus for Joining of Carbon-Carbon Composites, Rev. Sci. Instrum., 2007, vol. 78, no. 1, 015105.

  20. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method, J. Mater. Sci., 2006, vol. 41, no. 3, pp. 763–777.

    Article  CAS  Google Scholar 

  21. Messler, R.W. and Orling, T.T., Joining Advanced Materials into Hybrid Structures Using Pressurized Combustion Synthesis, in Advanced Joining Technologies for New Materials II, 1994, pp. 155–171.

  22. Messler, R. W., Jr., Zurbuchen, M.A., and Orling, T.T., Welding with Self-Propagating High-Temperature Synthesis, Weld. J., 1995, vol. 74, no. 10, pp. 37–41.

    CAS  Google Scholar 

  23. Cao, J., Feng, J.C., and Li, Z.R., Joining of TiAl Intermetallic by Self-Propagating High-Temperature Synthesis, J. Mater. Sci., 2006, vol. 41, p. 4270.

    Google Scholar 

  24. Matsuura, K., Ohsasa, K., Sueoka, N., and Kudoh, M., In situ Joining of Nickel Monoaluminide to Iron by Reactive Sintering, ISIJ Int., 1998, vol. 38, no. 3, pp. 310–315.

    CAS  Google Scholar 

  25. Li, S., Duan, H., Liu, S., Zhang, Y., Dang, Z., Zhang, Y., and Wu, C., Interdiffusion Involved in SHS Welding of SiC Ceramic to itself and to Ni-Based Superalloy, Int. J. Refract. Met. Hard Mater., 2000, vol. 18, no. 1, pp. 33–37.

    Article  CAS  Google Scholar 

  26. Li, S., Zhou, Y., Duan, H., Qui, J., and Zhang, Y., Joining of SiC Ceramic to Ni-Based Superalloy with Functionally Gradient Material Fillers and A Tungsten Intermediate Layer, J. Mater. Sci., 2003, vol. 38, pp. 4065–4070.

    Article  CAS  Google Scholar 

  27. Pascal, C., Marin-Ayral, R.M., and Tédenac, J.C., Simultaneous Supthesis and Joining of a Nicraly Layer to a Superalloy Substrate by Self-Propagating High-Temperature Synthesis, J. Mater. Synth. Process., 2001, vol. 9, no. 6, pp. 375–381.

    Article  CAS  Google Scholar 

  28. Dadras, P., Ngai, T.T., and Mehrota, G.M., Joining of Carbon-Carbon Composites Using Boron and Titanium Disilicide Interlayers, J. Am. Ceram. Soc., 1997, vol. 80, pp. 125–132.

    Article  CAS  Google Scholar 

  29. Parker, S., in McGraw-Hill Encyclopedia of Science and Technology, New York: McGraw Hill, 1997, vol. 19, pp. 488–498.

    Google Scholar 

  30. Liu, W. and Naka, M., In situ Joining of Dissimilar Nanocrystalline Materials by Spark Plasma Sintering, Scr. Mater., 2003, vol. 48, p. 1225.

    Article  CAS  Google Scholar 

  31. Fan, J., Chen, L., Bai, S., and Shi, X., Joining of Mo to CoSb3 by Spark Plasma Sintering by Inserting at Ti Interlayer, Mater. Lett., 2004, vol. 58, p. 3876.

    Article  CAS  Google Scholar 

  32. Blobaum, K.J., Reiss, M.E., Lawrence, J.M.P., and Weihs, T.P., Deposition and Characterization of a Self-Propagating CuOx/Al Thermite Reaction in a Multilayer Foil Geometry, J. Appl. Phys., vol. 94, no. 5, pp. 2915–2922.

  33. Duckham, A., Spey, S.J., Wang, J., Reiss, M.E., Weihs, T.P., Besnoin, E., and Knio, O.M., Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium, J. Appl. Phys., 2004, vol. 96, no. 4, pp. 2336–2342.

    Article  CAS  Google Scholar 

  34. Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M., Powers, M., Whitener, M., and Weihs, T.P., Room-Temperature Soldering with Nanostructured Foils, Appl. Phys. Lett., 2003, vol. 83, no. 19, pp. 3987–3989.

    Article  CAS  Google Scholar 

  35. Wang, J., Besnoin, E., Knio, O.M., and Weihs, T.P., Investigating the Effect of Applied Pressure on Reactive Multilayer Foil Joining, Acta Mater., 2004, vol. 52, no. 18, pp. 5265–5274.

    Article  CAS  Google Scholar 

  36. Anselmi-Tamburini, U. and Munir, Z.A., The Propagation of a Solid-State Combustion Wave in Ni-Al Foils, J. Appl. Phys., 1989, vol. 66, p. 5039.

    Article  CAS  Google Scholar 

  37. Bordeaux, F. and Yavari, A.R., Ultra Rapid Heating by Spontaneous Mixing Reactions in Metal-Metal Multilayer Composites, J. Mater. Res., 1990, vol. 5, p. 1656.

    Article  CAS  Google Scholar 

  38. Oh, J., Lee, W.C., Pyo, S.G., Park, W., Lee, S., and Kim, N.J., Microstructural Analysis of Multilayered Titanium Aluminide Sheets Fabricated by Hot Rolling and Heat Treatment, Metall. Mater. Trans. A, 2002, vol. 33, no. 12, pp. 3649–3659.

    Article  Google Scholar 

  39. Swiston, A.J., Besnoin, E., Duckham, A., Knio, O.M., Weihs, T.P., and Hufnagel, T.C., Thermal and Microstructural Effects of Welding Metallic Glasses by Self-Propagating Reactions in Multilayer Foils, Acta Mater., 2005, vol. 53, no. 13, pp. 3713–3719.

    Article  CAS  Google Scholar 

  40. Swiston, A.J., Hufnagel, T.C., and Weihs, T.P., Joining Bulk Metallic Glass Using Reactive Multilayer Foils, Scr. Mater., 2003, vol. 48, no. 12, pp. 1575–1580.

    Article  CAS  Google Scholar 

  41. Multilayer Foil Enables Ignition, Joining of Dissimilar Materials, Adv. Mater. Process., 2006, vol. 164, p. 8.

    Google Scholar 

  42. Zhang, L., Zhao, Z.M., Wang, J.J., Yan, S., and Cao, J.R., Joining between Ceramics and Metal in Composite Pipes Fabricated by the SHS Metallurgical Process, Key Eng. Mater., 2005, vols. 280–283, pp. 887–890.

    Google Scholar 

  43. Mansurov, Z.A., Dilmukhambetov, E.E., Ismailov, M.B., Fomenko, S.M., and Vongai, I.M., New Refractory Materials on the Basis of SHS Technology, La Chimica et l’Industria, 2001, vol. 83, pp. 1–6.

    Google Scholar 

  44. Umarov, N.K., Vongai, I.M., Abdulkarimov, P.G., and Dilmukhambetov, E.E., Macrokinetics of the SHS Process in the Oxide-Based Systems with Shungite, in 2nd International Symposium on Combustion and Plasma Chemistry, Almaty, Kazakhstan, 2003, pp. 254–257.

  45. Koizumi, M., Functionally Gradient SHS Materials, Int. J. SHS, 1992, vol. 1, p. 103.

    CAS  Google Scholar 

  46. Miyamoto, Y., State of the Art in R and D of SHS Materials in the World, Int. J. SHS, 1999, vol. 8, p. 375.

    CAS  Google Scholar 

  47. Dumont, A.L., Bonnet, J.P., Chartier, T., and Ferreira, J.M.F., MoSi2/Al2O3 FGM: Elaboration by Tape Casting and SHS, J. Eur. Ceram. Soc., 2001, vol. 21, no. 13, pp. 2353–2360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mukasyan.

About this article

Cite this article

Mukasyan, A.S., White, J.D.E. Combustion joining of refractory materials. Int. J Self-Propag. High-Temp. Synth. 16, 154–168 (2007). https://doi.org/10.3103/S1061386207030089

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386207030089

Key words

PACS numbers

Navigation