Skip to main content
Log in

Self-sustaining reactions induced by ball milling: An overview

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

When a highly exothermic powder mixture is activated in a ball mill, a self-propagating process can be ignited after a certain activation time. Exploring the effects of material properties and milling conditions on the ignition time, combined with characterization of reactant mixtures approaching the critical state at ignition, provides useful information on the mechanical activation process. After ignition, the reaction propagates thermally, similar to an SHS process. In this paper, the principles of mechanically induced self-sustaining reactions (MSR) are summarized and their relationships with mechanochemistry and SHS are discussed. Numerous examples are given, some interesting from the point of view of fundamental understanding of the process, others are promising as the bases of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Suryanarayana, C., Mechanical Alloying and Milling, New York: Marcel Dekker, 2004.

    Google Scholar 

  2. Boldyrev, V.V., Russ. Chem. Rev., 2006, vol. 75, no. 3, pp. 177–189.

    Article  CAS  Google Scholar 

  3. Experimental and Theoretical Studies in Modern Mechanochemistry, Delogu, F. and Mulas, G., Eds., Kerala (India): Transworld Research Network, 2009.

    Google Scholar 

  4. Merzhanov, A.G. and Mukasyan, A.S., Tverdoplamennoe Gorenie (Solid-Flame Combustion), Moscow: Torus Press, 2007.

    Google Scholar 

  5. Moore, J.J. and Feng, H.J., Prog. Mater. Sci., 1995, vol. 39, nos. 4-5, pp. 243–273, 275-316.

    Article  CAS  Google Scholar 

  6. Faraday, M., Quart. J. Sci. Liter. Arts, 1820, vol. 8, pp. 374–376.

    Google Scholar 

  7. Takacs, L., J. Therm. Anal. Calorim., 2007, vol. 90, no. 1, pp. 81–84.

    Article  CAS  Google Scholar 

  8. Avvakumov, E.G., Dyakov, V.E., Matycin, A.M., and Sgaver, A.M., Fiz. Goreniya Vzryva, 1975, no. 6, pp. 922–927.

    Google Scholar 

  9. Tschakarov, Chr.G., Gospodinov, G.G., and Bontschev, Z., J. Sol. State Chem., 1982, vol. 41, no. 9, pp. 244–252.

    Article  ADS  Google Scholar 

  10. Schaffer, G.B. and McCormick, P.G., Scr. Metall., 1989, vol. 23, no. 6, pp. 835–838.

    Article  CAS  Google Scholar 

  11. Schaffer, G.B. and McCormick, P.G., Mater. Trans. A, 1990, vol. 21, no. 10, pp. 2789–2794.

    Article  Google Scholar 

  12. Munir, Z.A., Ceram. Bull., 1988, vol. 67, no. 2, pp. 342–349.

    CAS  Google Scholar 

  13. Atzmon, M., Phys. Rev. Lett., 1990, vol. 64, no. 4, pp. 487–490.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Merzhanov, A.G., Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings, in Combustion and Plasma Synthesis of High-Temperature Materials, Munir, Z.A. and Holt, J.B., Eds., New York: VCH, 1990, pp. 1–53.

    Google Scholar 

  15. Benjamin, J.S., Mechanical Aloying: A Perspective, in New Materials by Mechanical Alloying, Artz, E. and Schultz, L., Eds., Oberursel: DGM Informationsgesellschaft, 1989, pp. 3–18.

    Google Scholar 

  16. Boldyrev, V.V. and Tkachova, K., J. Mater. Synth. Proc. 2000, vol. 8, nos. 3-4, pp. 121–132.

    Article  CAS  Google Scholar 

  17. Takacs, L., Prog. Mater. Sci., 2002, vol. 47, no. 4, pp. 355–414.

    Article  CAS  Google Scholar 

  18. Gaffet, E., Charlot, F., Klein, D., Bernard, F., and Niepce, J.-C., Mater. Sci. Forum, 1998, vols. 269-272, pp. 379–384.

    Article  CAS  Google Scholar 

  19. McCormick, P.G., Mater. Trans., JIM, 1995, vol. 36, no. 2, pp. 161–169.

    CAS  Google Scholar 

  20. Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep., 1989, vol. 3, no. 6, pp. 279–365.

    Article  Google Scholar 

  21. Takacs, L. and Mandal, S.K., Mater. Sci. Eng. A, 2001, vols. 304-306, nos. 1-2, pp. 429–433.

    Google Scholar 

  22. Koch, C.C., Annu. Rev. Mater. Sci., 1989, vol. 19, pp. 121–143.

    Article  CAS  Google Scholar 

  23. Heinicke, G., Tribochemistry, München: Carl Hanser Verlag, 1984.

    Google Scholar 

  24. Gilman, J.J., Mater. Sci. Technol., 2006, vol. 22, no. 4, pp. 430–437.

    Article  CAS  Google Scholar 

  25. Delogu, F. and Cocco, G., Phys. Rev. B, 2005, vol. 72, pp. 014124-1–11.

    ADS  Google Scholar 

  26. Maric, R., Ishihara, K.N., and Shingu, P.H., Mater. Sci. Forum, 1995, vols. 179-181, pp. 801–806.

    Article  CAS  Google Scholar 

  27. Riley, D.P., Kisi, E.H., and Phelan, D., J. Eur. Ceram. Soc., 2006, vol. 26, no. 6, pp. 1051–1058.

    Article  CAS  Google Scholar 

  28. Yang, H. and McCormick, P.G., J. Sol. State Chem., 1993, vol. 107, no. 1, pp. 258–263.

    Article  CAS  ADS  Google Scholar 

  29. Gras, C., Gaffet, E., Bernard, F., and Niepce, J.C., Mater. Sci. Eng. A, 1999, vol. 264, nos. 1-2, pp. 94–107.

    Article  Google Scholar 

  30. Takacs, L., Soika, V., and Balaz, P., Solid State Ionics, 2001, vol. 141-142, pp. 641–647.

    Article  CAS  Google Scholar 

  31. Bab, M.A., Baum, L.A., and Mendoza-Zelis, L., Phys. B, 2007, vol. 389, no. 1, pp. 193–197.

    Article  CAS  ADS  Google Scholar 

  32. Schaffer, G.B. and McCormick, P.G., Metall. Trans. A, 1992, vol. 23, no. 4, pp. 1285–1290.

    Article  Google Scholar 

  33. Ma, E., Pagän, J., Cranford, G., and Atzmon, M., J. Mater. Res., 1993, vol. 8, no. 8, pp. 1836–1844.

    Article  CAS  ADS  Google Scholar 

  34. Calos, N.J., Forrester, J.S., and Schaffer, G.B., J. Solid State Chem., 2001, vol. 158, no. 2, pp. 268–278.

    Article  CAS  ADS  Google Scholar 

  35. Avvakumov, E.G. and Kosova, N.V., Sib. Khim. Zh. 1991, no. 5, pp. 62–66.

    Google Scholar 

  36. Chakurov, Chr., Rusanov, V., and Koichev, J., J. Solid State Chem., 1987, vol. 71, no. 2, pp. 522–529.

    Article  CAS  ADS  Google Scholar 

  37. Monagheddu, M., Doppiu, S., Deidda, C., and Cocco, G., J. Phys. D:Appl. Phys., 2003, vol. 36, no. 15, pp. 1917–1922.

    Article  CAS  ADS  Google Scholar 

  38. Deidda, C., Doppiu, S., Monagheddu, M., and Cocco, G., J. Metastab. Nanocryst. Mater., 2003, vols. 15-16, pp. 215–220.

    Article  CAS  Google Scholar 

  39. Yang, H. and McCormick, P.G., J. Solid State Chem., 1994, vol. 110, no. 1, pp. 136–141.

    Article  CAS  ADS  Google Scholar 

  40. Takacs, L., Appl. Phys. Lett., 1996, vol. 69, no. 3, pp. 436–438.

    Article  CAS  ADS  Google Scholar 

  41. Takacs, L. and Soika, V., Mater. Sci. Forum, 2001, vols. 360-362, pp. 427–432.

    Article  CAS  Google Scholar 

  42. Takacs, L. and Susol, M., Mater. Sci. Forum, 1996, vols. 225-227, pp. 559–562.

    Article  CAS  Google Scholar 

  43. Deidda, C., Delogu, F., Maglia, F., Anselmi-Tamburini, U., and Cocco, G., Mater. Sci. Eng. A, 2004, vols. 375-377, pp. 800–803.

    Article  Google Scholar 

  44. Rusanov, V. and Chakurov, Chr., J. Solid State Chem., 1990, vol. 89. no. 1,pp. 1–9.

    Article  CAS  ADS  Google Scholar 

  45. Takacs, L. and Susol, M.A., J. Solid State Chem., 1996, vol. 121, no. 2, pp. 394–399.

    Article  CAS  ADS  Google Scholar 

  46. Bakhshai, A., Soika, V., Susol, M.A., and Takacs L., J. Solid State Chem., 2000, vol. 153, no. 2, pp. 371–380.

    Article  CAS  ADS  Google Scholar 

  47. Takacs, L., to be published.

  48. Patankar, S.N., Xiao, S.-Q., Lewandowski, J.J., and Heuer, A.H., J. Mater. Res., 1993, vol. 8, no. 6, pp. 1311–1316.

    Article  CAS  ADS  Google Scholar 

  49. Kim, J.W., Chung, H.-S., Lee, S.H., Oh, K.H., Shim, J.-H., and Cho, Y.W., Intermetallics, 2007, vol. 15, no. 2, pp. 206–210.

    Article  Google Scholar 

  50. Cordoba, J.M., Sayagues, M.J., Alcala, M.D., and Gotor, F.J., J. Am. Ceram. Soc., 2007, vol. 90, no. 2, pp. 381–387.

    Article  CAS  Google Scholar 

  51. Umbrajkar, S., Trunov, M.A., Schoenitz, M., and Dreizin, E.L., Prop. Explos. Pyrotech., 2007, vol. 32, no. 1, pp. 32–41.

    Article  CAS  Google Scholar 

  52. Anselmi-Tamburini, U., Maglia, F., Doppiu, S., Monagheddu, M., Cocco, G., and Munir, Z.A., J. Mater. Res., 2004, vol. 19, no. 5, pp. 1558–1566.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Takacs.

Additional information

The article is published in the original.

About this article

Cite this article

Takacs, L. Self-sustaining reactions induced by ball milling: An overview. Int. J Self-Propag. High-Temp. Synth. 18, 276–282 (2009). https://doi.org/10.3103/S1061386209040086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386209040086

Navigation