Skip to main content
Log in

Abstract

The current state of chemical kinetics for self-propagating high-temperature non-catalytic reactions has been reviewed for results over the past 50 years. Five different characterization techniques are primarily considered: differential thermal analysis (DTA), electrothermal explosion (ETE), electrothermography (ET), combustion velocity/temperature analyses (Merzhanov–Khaikin and Boddington–Laye approaches), and other advanced in-situ diagnostics, including time-resolved X-ray diffraction (TRXRD). Based on the summary of results thus far, recommendations are given for the future of SHS kinetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorban, A.N. and Yablonski, G.S., Three waves of chemical dynamics, Math. Model. Nat. Phenom., 2015, vol. 10, no. 5, pp. 1–5. doi 10.1051/mmnp/201510501

    Article  Google Scholar 

  2. Merzhanov, A.G. and Borovinskaya, I.P., Selfspreading high-temperature synthesis of refractory compounds, Dokl. Chem., 1972, vol. 204, no. 2, pp. 429–431.

    Google Scholar 

  3. Rogachev, A.S. and Mukasyan, A.S., Combustion for Materials Synthesis, Boca Raton–London–New York: CRC Press, 2015.

    Google Scholar 

  4. Shuck, C.E., Manukyan, K.V., Rouvimov, S., Rogachev, A.S., and Mukasyan, A.S., Solid flame: Experimental validation, Combust. Flame, 2016, vol. 162, no. 2, pp. 487–493. doi 10.1016/j.combustflame.2015.10.025

    Article  Google Scholar 

  5. Shuck, C.E., Pauls, J.M., and Mukasyan, A.S., Ni/Al energetic nanocomposites and the solid flame phenomenon, J. Phys. Chem. C, 2016, vol. 120, no. 47, pp. 27066–27078. doi 10.1021/acs.jpcc.6b09754

    Article  Google Scholar 

  6. Šimon, P., Isoconversional methods, J. Therm. Anal. Calorim., 2004, vol. 76, no. 1, pp. 123–132. doi 10.1023/B:JTAN.0000027811.80036.6c

    Article  Google Scholar 

  7. Merzhanov, A.G., Borovinskaya, I.P., Shteinberg, A.S., Kochetov, N.A., Ulybin, V.B., and Shipilov, V.V., A method for production of refractory compounds, USSR Inventor’s Certificate 2 130 084, Byull. Izobret., 1977, vol. 46, p. 64.

    Google Scholar 

  8. Merzhanov, A.G., Grigorev, Y.M., Kharatyan, S.L., Mashkinov, L.V., and Vartanyan, Z.S., Heat-release kinetics in high-temperature nitriding of zirconium wires, Combust. Explos. Shock Waves, 1975, vol. 11, no. 4, pp. 477–481. doi 10.1007/BF00744914

    Article  Google Scholar 

  9. Boldyrev, V.V., Aleksandrov, V.V., Korchagin, M.A., Tolochko, B.P., Guzenko, S.N., Sokolov, A.S., Sheromov, M.A., and Lyakhov, N.Z., Study of phase formation dynamics at nickel monoaluminide synthesis in combustion regime, Dokl. Akad. Nauk SSSR, 1981, vol. 259, no. 5, pp. 1127–1129.

    Google Scholar 

  10. Reeves, R.V., White, J.D.E., Dufresne, E.M., Fezzaa, K., Son, S.F., Varma, A., and Mukasyan, A.S., Microstructural transformations and kinetics of high-temperature heterogeneous gasless reactions by highspeed X-ray phase-contrast imaging, Phys. Rev. B, 2009, vol. 80, no. 22, 224103. doi 10.1103/Phys- RevB.80.224103

    Article  Google Scholar 

  11. Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D., and Campbell, G.H., Imaging of transient structures using nanosecond in situ TEM, Science, 2008, vol. 321, no. 5895, pp. 1472–1475. doi 10.1126/science.1161517

    Article  Google Scholar 

  12. Kissinger, H.E., Reaction kinetics in differential thermal analysis, Anal. Chem., 1957, vol. 29, no. 11, pp. 1702–1706.

    Article  Google Scholar 

  13. Borchardt, H.J. and Daniels, F., The application of differential thermal analysis to the study of reaction kinetics, J. Am. Chem. Soc., 1957, vol. 79, no. 1, pp. 41–46.

    Article  Google Scholar 

  14. Friedman, H.L., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci.: Polym. Symp., 1964, vol. 6, no. 1, pp. 183–195. doi 10.1002/polc.5070060121

    Google Scholar 

  15. Ozawa, T., A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 1965, vol. 38, no. 11, pp. 1881–1886. doi 10.1246/bcsj.38.1881

    Article  Google Scholar 

  16. Flynn, J.H. and Wall, L.A., A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. C: Polym. Lett., 1966, vol. 4, no. 5, pp. 323–328. doi 10.1002/pol.1966. 110040504

    Google Scholar 

  17. Ozawa, T., Kinetics of non-isothermal crystallization, Polymer, 1971, vol. 12, no. 3, pp. 150–158. doi 10.1016/0032-3861(71)90041-3

    Article  Google Scholar 

  18. Starink, M.J., A new method for the derivation of activation energies from experiments performed at constant heating rate, Thermochim. Acta, 1996, vol. 288, nos. 1–2, pp. 97–104. doi 10.1016/S0040- 6031(96)03053-5

    Article  Google Scholar 

  19. Vyazovkin, S. and Wight, C.A., Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data, Thermochim. Acta, 1999, vol. 340, no. 1, pp. 53–68. doi 10.1016/S0040- 6031(99)00253-1

    Article  Google Scholar 

  20. Philpot, K.A., Munir, Z.A., and Holt, J.B., An investigation of the synthesis of nickel aluminides through gasless combustion, J. Mater. Sci., 1987, vol. 22, no. 1, pp. 159–169. doi 10.1007/BF01160566

    Article  Google Scholar 

  21. Hunt, E.M. and Pantoya, M.L, Ignition dynamics and activation energies of metallic thermites: From nanoto- micron-scale particulate composites, J. Appl. Phys., 2005, vol. 98, no. 3, 034909. doi 10.1063/1.1990265

    Article  Google Scholar 

  22. Kim, H.Y., Chung, D.S., and Hong, S.H., Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites, Mater. Sci. Eng. A, 2005, vol. 396, no. 1, pp. 376–384. doi 10.1016/j.msea.2005.01.044

    Article  Google Scholar 

  23. White, J.D., Reeves, R.V., Son, S.F., and Mukasyan, A.S., Thermal explosion in Al−Ni system: Influence of mechanical activation, J. Phys. Chem. A, 2009, vol. 113, no. 48, pp. 13541–13547. doi 10.1021/jp905175c

    Article  Google Scholar 

  24. Reeves, R.V., Mukasyan, A.S., and Son, S.F., Thermal and impact reaction initiation in Ni/Al heterogeneous reactive systems, J. Phys. Chem. C, 2010, vol. 114, no. 35, pp. 14772–14780. doi 10.1021/jp104686z

    Article  Google Scholar 

  25. Manukyan, K.V., Mason, B.A., Groven, L.J., Lin, Y.C., Cherukara, M., Son, S.F., Strachan, A., and Mukasyan, A.S., Tailored reactivity of Ni + Al nanocomposites: Microstructural correlations, J. Phys. Chem. C, 2012, vol. 116, no. 39, pp. 21027–21038. doi 10.1021/jp303407e

    Article  Google Scholar 

  26. Baghdasaryan, A.M., Hobosyan, M.A., Khachatryan, H.L., Niazyan, O.M., Kharatyan, S.L., Sloyan, L.H., and Grigoryan, Y.G., The role of chemical activation on the combustion and phase formation laws in the Ni–Al-promoter system, Chem. Eng. J., 2002, vol. 188, pp. 210–215. doi 10.1016/j.cej.2012. 01.137

    Article  Google Scholar 

  27. Kuk, S.W., Yu, J., and Ryu, H.J., Effects of interfacial Al oxide layers: Control of reaction behavior in micrometer-scale Al/Ni multilayers, Mater. Design, 2015, vol. 84, pp. 372–377. doi 10.1016/j.matdes.2015.06.173

    Article  Google Scholar 

  28. Maiti, S.C. and Ghoroi, C., Thermokinetic analysis of Ni–Al intermetallic phase formation in powder system, J. Therm. Anal. Calorim., 2016, vol. 124, no. 2, pp. 1039–1051. doi 10.1007/s10973-015-5171-2

    Article  Google Scholar 

  29. Illeková, E., Gachon, J.C., Rogachev, A., Grigoryan, H., Schuster, J.C., Nosyrev, A., and Tsygankov, P., Kinetics of intermetallic phase formation in the Ti/Al multilayers, Thermochim. Acta, 2008, vol. 469, no. 1, pp. 77–85. doi 10.1016/j.tca.2007.12.011

    Article  Google Scholar 

  30. Sina, H. and Iyengar, S., Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures, J. Therm. Anal. Calorim., 2015, vol. 122, no. 2, pp. 689–698. doi 10.1007/s10973-015-4815-6

    Article  Google Scholar 

  31. Adeli, M., Seyedein, S.H., Aboutalebi, M.R., Kobashi, M., and Kanetake, N., Implementation of DSC analysis in reaction kinetics during heating of Ti–50 at % Al powder mixture, J. Therm. Anal. Calorim., 2017, vol. 128, no. 2, pp. 867–874. doi 10.1007/s10973-016-5982-9

    Article  Google Scholar 

  32. Mostaan, H., Karimzadeh, F., and Abbasi, M.H., Synthesis and formation mechanism of nanostructured NbAl3 intermetallic during mechanical alloying and a kinetic study on its formation, Thermochim. Acta, 2012, vol. 529, pp. 36–44. doi 10.1016/j.tca.2011.11.017

    Article  Google Scholar 

  33. Reeves, R.V. and Adams, D.P., Reaction instabilities in Co/Al nanolaminates due to chemical kinetics variation over micron-scales, J. Appl. Phys., 2014, vol. 115, no. 4, 044911. doi 10.1063/1.4863339

    Article  Google Scholar 

  34. Pauly, C., Woll, K., Bax, B., and Mücklich, F., The role of transitional phase formation during ignition of reactive multilayers, Appl. Phys. Lett., 2015, vol. 107, no. 11, 113104. doi 10.1063/1.4930022

    Article  Google Scholar 

  35. Zhou, Y., Zhu, Y., Zhu, Y., and Li, L., Phase transformation, kinetics and thermodynamics during the combustion synthesis of Mg2Al3 alloy, J. Alloys Comp., 2015, vol. 628, pp. 257–262. doi 10.1016/j.jallcom.2014.12.191

    Article  Google Scholar 

  36. Lee, D., Sim, G.D., Xiao, K., and Vlassak, J.J., Lowtemperature synthesis of ultra-high-temperature coatings of ZrB2 using reactive multilayers, J. Phys. Chem. C, 2014, vol. 118, no. 36, pp. 21192–21198. doi 10.1021/jp505941g

    Article  Google Scholar 

  37. Takacs, L., Soika, V., and Baláž, P., The effect of mechanical activation on highly exothermic powder mixtures, Solid State Ionics, 2001, vol. 141, pp. 641–647. doi 10.1016/S0167-2738(01)00791-3

    Article  Google Scholar 

  38. Kim, B.G., Lee, Y.W., Lee, J.W., and Choi, Y., Formation mechanism of C/SiC/C multilayers during self-propagating high-temperature synthesis, Surf. Coat. Technol., 2002, vol. 151, no. 1, pp. 26–30. doi 10.1016/S0257-8972(01)01637-1

    Article  Google Scholar 

  39. Hu, Q., Zhang, M., Luo, P., Song, M., and Li, J., Thermal explosion synthesis of ZrC particles and their mechanism of formation from Al–Zr–C elemental powders, Int. J. Refr. Met. Hard Mater., 2012, vol. 35, pp. 251–256. doi 10.1016/j.ijrmhm.2012.06.008

    Article  Google Scholar 

  40. Liu, G., Li, J., and Chen, K., Reaction mechanism in fast combustion synthesis of superconducting FeSe and FeSe0.7Te0.3, Acta Mater., 2017, vol. 122, pp. 187–198. doi 10.1016/j.actamat.2016.09.056

    Article  Google Scholar 

  41. Hobosyan, M.A., Kirakosyan, K.G., Kharatyan, S.L., and Martirosyan, K.S., PTFE–Al2O3 reactive interaction at high heating rates, J. Therm. Anal. Calorim., 2015, vol. 119, no. 1, pp. 245–251. doi 10.1007/s10973- 014-4080-0

    Article  Google Scholar 

  42. Pathak, L.C., Bandyopadhyay, D., Srikanth, S., Das, S.K., and Ramachandrarao, P., Effect of heating rates on the synthesis of Al2O3–SiC composites by the self-propagating high-temperature synthesis (SHS) technique, J. Am. Ceram. Soc., 2001, vol. 84, no. 5, pp. 915–920. doi 10.1111/j.1151-2916.2001.tb00768.x

    Article  Google Scholar 

  43. Choi, Y. and Rhee, S.W., Reaction of TiO2–Al–C in the combustion synthesis of TiC–Al2O3 composite, J. Am. Ceram. Soc., 1995, vol. 78, no. 4, pp. 986–992. doi 10.1111/j.1151-2916.1995.tb08426.x

    Article  Google Scholar 

  44. Zhu, H., Jiang, Y., Yao, Y., Song, J., Li, J., and Xie, Z., Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al–TiO2–C powder mixtures, Mater. Chem. Phys., 2012, vol. 137, no. 2, pp. 532–542. doi 10.1016/j.matchemphys.2012.09.052

    Article  Google Scholar 

  45. Rafiei, M., Enayati, M.H., and Karimzadeh, F., Kinetic analysis of thermite reaction in Al–Ti–Fe2O3 system to produce (Fe,Ti)3Al–Al2O3 nanocomposite, Powder Technol., 2014, vol. 253, pp. 553–560. doi 10.1016/j.powtec.2013.12.028

    Article  Google Scholar 

  46. Jordan, J.L. and Thadhani, N.N., Effect of shockactivation on post-shock reaction synthesis of ternary ceramics, AIP Conf. Proc., 2002, vol. 620, no. 1, pp. 1097–1100. doi 10.1063/1.1483729

    Article  Google Scholar 

  47. Knyazik, V.A., Merzhanov, A.G., Solomonov, V.B., and Shteinberg, A.S., Macrokinetics of high-temperature titanium interaction with carbon under electrothermal explosion conditions, Combust. Explos. Shock Waves, 1985, vol. 21, no. 3, pp. 333–337. doi 10.1007/BF01463853

    Article  Google Scholar 

  48. Knyazik, V., Shteinberg, A., and Gorovenko, V., Thermal analysis of high-speed high-temperature reactions of refractory carbide synthesis, J. Therm. Anal. Calorim., 1993, vol. 40, no. 1, pp. 363–371. doi 10.1007/BF02546588

    Article  Google Scholar 

  49. Gorovenko, V.I., Knyazik, V.A., and Shteinberg, A.S., High-temperature interaction between silicon and carbon, Ceram. Int., 1993, vol. 19, no. 2, pp. 129–132. doi 10.1016/0272-8842(93)90086-7

    Article  Google Scholar 

  50. Knyazik, V., High-temperature interaction in the Ta–C system under electrothermal explosion conditions, J. Mater. Synth. Process., 1993, vol. 1, no. 2, pp. 85–92.

    Google Scholar 

  51. Kostogorova, J.Y., Viljoen, H.J., and Shteinberg, A.S., A macrokinetic study of the high-temperature solidphase titanium−carbon reaction, Ind. Eng. Chem. Res., 2003, vol. 42, no. 26, pp. 6714–6719. doi 10.1021/ie030337k

    Article  Google Scholar 

  52. Popov, K.V., Knyazik, V.A., and Shteinberg, A.S., Study of high-temperature reaction of Ti with B by the method of electrothermal explosion, Combus. Explos. Shock Waves, 1993, vol. 29, no. 1, pp. 77–81. doi 10.1007/BF00755335

    Article  Google Scholar 

  53. Shteinberg, A.S., Lin, Y.C., Son, S.F., and Mukasyan, A.S., Kinetics of high temperature reaction in Ni–Al system: Influence of mechanical activation, J. Phys. Chem. A, 2010, vol. 114, no. 20, pp. 6111–6116. doi 10.1021/jp1018586

    Article  Google Scholar 

  54. Mukasyan, A.S., Khina, B.B., Reeves, R.V., and Son, S.F., Mechanical activation and gasless explosion: Nanostructural aspects, Chem. Eng. J., 2011, vol. 174, no. 2, pp. 677–686. doi 10.1016/j.cej.2011.09.028

    Article  Google Scholar 

  55. Shuck, C.E. and Mukasyan, A.S., Reactive Ni/Al nanocomposites: Structural characteristics and activation energy, J. Phys. Chem. A, 2017, vol. 121, no. 6, pp. 1175–1181. doi 10.1021/acs.jpca.6b12314

    Article  Google Scholar 

  56. Filimonov, V.Y., Korchagin, M.A., Smirnov, E.V., and Lyakhov, N.Z., Macrokinetics of solid-phase synthesis in activated 3Ni + Al mixture in the thermal explosion mode, Combust. Explos. Shock Waves, 2010, vol. 46, no. 4, pp. 449–456. doi 10.1007/s10573-010- 0059-8

    Article  Google Scholar 

  57. Lin, Y.C., Shteinberg, A.S., McGinn, P.J., and Mukasyan, A.S., Kinetics study in Ti–Fe2O3 system by electrothermal explosion method, Int. J. Therm. Sci., 2014, vol. 84, pp. 369–378. doi 10.1016/j.ijthermalsci. 2014.06.008

    Article  Google Scholar 

  58. Shilyaev, M.I., Borzykh, V.É., Dorokhov, A.R., and Ovcharenko, V.E., Determination of thermokinetic parameters from the inverse problem of an electrothermal explosion, Combust. Explos. Shock Waves, 1992, vol. 28, no. 3, pp. 258–262. doi 10.1007/BF00749640

    Article  Google Scholar 

  59. Bostandzhiyan, S., Gordopolova, I., and Shcherbakov, V., Modeling of an electrothermal explosion in gasless systems placed into an electroconducting medium, Combust. Explos. Shock Waves, 2013, vol. 49, no. 6, pp. 668–675. doi 10.1134/S0010508213060051

    Article  Google Scholar 

  60. Bostandzhiyan, S.A., Gordopolova, I.S., Shcherbakov, A.V., and Shcherbakov, V.A., Electrothermal explosion in cylindrical Ti–C charges covered with a TiC shell: A mathematical model, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 3, pp. 183–188. doi 10.3103/S1061386212030077

    Article  Google Scholar 

  61. Bostandzhiyan, S.A., Shcherbakov, A.V., and Shcherbakov, V.A., Mathematical modeling of electrothermal explosion in gasless systems placed in a hollow dielectric cylinder, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 2, pp. 75–79. doi 10.3103/S1061386216020035

    Article  Google Scholar 

  62. Merzhanov, A.G., New elementary combustion models of 2nd kind, Dokl. Akad. Nauk SSSR, 1977, vol. 233, no. 6, pp. 1130–1133.

    Google Scholar 

  63. Boddington, T., Laye, P.G., Tipping, J., and Whalley, D., Kinetic analysis of temperature profiles of pyrotechnic systems, Combust. Flame, 1986, vol. 63, no. 3, pp. 359–368. doi 10.1016/0010-2180(86)90005-2

    Article  Google Scholar 

  64. Boddington, T., Cottrell, A., and Laye, P.G., Combustion transfer in gasless pyrotechnics, Combust. Flame, 1990, vol. 79, nos. 3–4, pp. 234–241. doi 10.1016/0010-2180(90)90135-E

    Article  Google Scholar 

  65. Laye, P.G., Constantinou, C.P., and Volk, F., Experimental studies of the propagation of combustion in solids [and discussion], Philos. Trans. Royal Soc. London A: Math. Phys. Eng. Sci., 1992, vol. 339, no. 1654, pp. 387–394. doi 10.1098/rsta.1992.0044

    Article  Google Scholar 

  66. Varma, A. and Lebrat, J.P., Combustion synthesis of advanced materials, Chem. Eng. Sci., 1992, vol. 47, nos. 9–11, pp. 2179–2194. doi 10.1016/0009-2509(92)87034-N

    Article  Google Scholar 

  67. Baras, F., Determination of transport and kinetic properties in self-propagating high-temperature synthesis, J. Alloys Comp., 2008, vol. 455, no. 1, pp. 113–120. doi 10.1016/j.jallcom.2007.01.076

    Article  Google Scholar 

  68. Mukasyan, A.S. and Rogachev, A.S., Discrete reaction waves: Gasless combustion of solid powder mixtures, Prog. Energ. Combust. Sci., 2008, vol. 34, no. 3, pp. 377–416. doi 10.1016/j.pecs.2007.09.002

    Article  Google Scholar 

  69. Dumez, M.C., Marin-Ayral, R.M., and Tédenac, J.C., The role of experimental parameters in combustion synthesis of NiAl under high gas pressure, J. Alloys Comp., 1998, vol. 268, no. 1, pp. 141–151. doi 10.1016/S0925-8388(97)00620-8

    Article  Google Scholar 

  70. Marin-Ayral, R.M., Dumez, M.C., and Tédenac, J.C., Influence of high gas pressure on combustion synthesis of the solid–solid reaction of NiAl compound, Mater. Res. Bull., 2000, vol. 35, no. 2, pp. 233–243. doi 10.1016/S0025-5408(00)00197-5

    Article  Google Scholar 

  71. Zenin, A.A., Merzhanov, A.G., and Nersisyan, G.A., Thermal wave structure in SHS processes, Combust. Explos. Shock Waves, 1981, vol. 17, no. 1, pp. 63–71. doi 10.1007/BF00772787

    Article  Google Scholar 

  72. Munir, Z.A., Reaction synthesis processes: Mechanisms and characteristics, Metall. Trans. A, 1992, vol. 23, no. 1, pp. 7–13. doi 10.1007/BF02660845

    Article  Google Scholar 

  73. Dunmead, S.D., Munir, Z.A., and Holt, J.B., Temperature profile analysis of combustion in the Zr–B system using the Boddington–Laye method, Int. J. Self-Propag. High-Temp. Synth., 1992, vol. 1, no. 1, pp. 22–32.

    Google Scholar 

  74. Holt, J.B., Kingman, D.D., and Bianchini, G.M., Kinetics of the combustion synthesis of TiB2, Mater. Sci. Eng., 1985, vol. 71, nos. 1–2, pp. 321–327. doi 10.1016/0025-5416(85)90244-7

    Article  Google Scholar 

  75. Yeh, C.L. and Chen, W.H., Preparation of niobium borides NbB and NbB2 by self-propagating combustion synthesis, J. Alloys Comp., 2006, vol. 420, no. 1, pp. 111–116. doi 10.1016/j.jallcom.2005.10.031

    Article  Google Scholar 

  76. Yeh, C.L. and Chen, W.H., A comparative study on combustion synthesis of Nb–B compounds, J. Alloys Comp., 2006, vol. 422, no. 1, pp. 78–85. doi 10.1016/j.jallcom.2005.11.053

    Article  Google Scholar 

  77. Yeh, C.L. and Hsu, W.S., Preparation of MoB and MoB–MoSi2 composites by combustion synthesis in SHS mode, J. Alloys Comp., 2007, vol. 440, no. 1, pp. 193–198. doi 10.1016/j.jallcom.2006.09.072

    Article  Google Scholar 

  78. Li, H.P. and Sekhar, J.A., Belousov–Zhabotinsky dissipative reactions in Ti–B and Ni–Al alloy systems, Acta Mater., 2009, vol. 57, no. 18, pp. 5430–5444. doi 10.1016/j.actamat.2009.07.039

    Article  Google Scholar 

  79. Dunmead, S.D., Readey, D.W., Semler, C.E., and Hol, J.B., Kinetics of combustion synthesis in the Ti–C and Ti–C–Ni systems, J. Am. Ceram. Soc., 1989, vol. 72, no. 12, pp. 2318–2324. doi 10.1111/j.1151- 2916.1989.tb06083.x

    Article  Google Scholar 

  80. Wang, L.L. and Munir, Z.A., Kinetic analysis of the combustion synthesis of molybdenum and titanium silicides, Metall. Mater. Trans. B, 1995, vol. 26, no. 3, pp. 595–601. doi 10.1007/BF02653880

    Article  Google Scholar 

  81. Kachelmyer, C.R., Varma, A., Rogachev, A.S., and Sytschev, A.E., Influence of reaction mixture porosity on the effective kinetics of gasless combustion synthesis, Ind. Eng. Chem. Res., 1998, vol. 37, no. 6, pp. 2246–2249. doi 10.1021/ie9704915

    Article  Google Scholar 

  82. LaSalvia, J.C. and Meyers, M.A., Combustion synthesis in the Ti–C–Ni–Mo system: II. Analysis, Metall. Mater. Trans. A, 1995, vol. 26, no. 11, pp. 3011–3019. doi 10.1007/BF02669657

    Article  Google Scholar 

  83. Boddington, T. and Laye, P.O., Temperature dependence of the burning velocity of gasless pyrotechnics, Thermochim. Acta, 1987, vol. 120, pp. 203–206. doi 10.1016/0040-6031(87)80217-4

    Article  Google Scholar 

  84. Drennan, R.L. and Brown, M.E., Binary and ternary pyrotechnic systems of Mn and/or Mo and BaO2 and/or SrO2: 3. Kinetic aspects, Thermochim. Acta, 1992, vol. 208, pp. 247–259. doi 10.1016/0040- 6031(92)80168-V

    Article  Google Scholar 

  85. Anil Rugunanan, R. and Brown, M.E., Combustion of binary and ternary silicon/oxidant pyrotechnic systems: 4. Kinetic aspects, Combust. Sci. Technol., 1993, vol. 95, nos. 1–6, pp. 117–138. doi 10.1080/00102209408935330

    Article  Google Scholar 

  86. Brown, M., Some thermal studies on pyrotechnic compositions, J. Therm. Anal. Calorim., 2001, vol. 65, no. 2, pp. 323–334. doi 10.1023/A:1017996111961

    Article  Google Scholar 

  87. Tribelhorn, M.J., Blenkinsop, M.G., and Brown, M.E., Combustion of some iron-fuelled binary pyrotechnic systems, Thermochim. Acta, 1995, vol. 256, no. 2, pp. 291–307. doi 10.1016/0040-6031(94)02190-Y

    Article  Google Scholar 

  88. Tribelhorn, M.J., Venables, D.S., and Brown, M.E., Combustion of some zinc-fuelled binary pyrotechnic systems, Thermochim. Acta, 1995, vol. 256, no. 2, pp. 309–324. doi 10.1016/0040-6031(95)02248-Z

    Article  Google Scholar 

  89. Jakubko, J., Combustion of the silicon-red lead system: Temperature of burning, kinetic analysis, and mathematical model, Combust. Sci. Technol., 1999, vol. 146, nos. 1–6, pp. 37–55. doi 10.1080/00102209908924207

    Article  Google Scholar 

  90. Manukyan, K.V., Kirakosyan, K.G., Grigoryan, Y.G., Niazyan, O.M., Yeghishyan, A.V., Kirakosyan, A.G., and Kharatyan, S.L., Mechanism of molten-salt-controlled thermite reactions, Ind. Eng. Chem. Res., 2011, vol. 50, no. 19, pp. 10982–10988. doi 10.1021/ie2003544

    Article  Google Scholar 

  91. Won, H.I., Nersisyan, H.H. and Won, C.W., A macrokinetic study of the WO3/Zn reaction diluted with NaCl, Chem. Eng. J., 2009, vol. 153, no. 1, pp. 193–198. doi 10.1016/j.cej.2009.05.042

    Article  Google Scholar 

  92. Tomasi, R. and Munir, Z.A., Effect of particle size on the reaction wave propagation in the combustion synthesis of Al2O3–ZrO2–Nb composites, J. Am. Ceram. Soc., 1999, vol. 82, no. 8, pp. 1985–1992. doi 10.1111/j.1151-2916.1999.tb02030.x

    Article  Google Scholar 

  93. Marinšek, M., Kemperl, J., Likozar, B., and Macek, J., Temperature profile analysis of the citrate–nitrate combustion system, Ind. Eng. Chem. Res., 2008, vol. 47, no. 13, pp. 4379–4386. doi 10.1021/ie800296m

    Article  Google Scholar 

  94. Marinšek, M., Analysis of the temperature profiles during the combustion synthesis of doped lanthanum gallate, Mater. Tehnol. (Prague), 2008, vol. 42, no. 2, pp. 85–91.

    Google Scholar 

  95. Vadchenko, S.G., Grigor’ev, Yu.M., and Merzhanov, A.G., The kinetics of high-temperature tantalum nitriding, Izv. Akad. Nauk SSSR, Met., 1980, no. 5, pp. 223–229.

    Google Scholar 

  96. Pelekh, A.E., Mukasyan, A.S., and Varma, A., Kinetics of rapid high-temperature reactions: Titanium–nitrogen system, Ind. Eng. Chem. Res., 1999, vol. 38, no. 3, pp. 793–798. doi 10.1021/ie980369l

    Article  Google Scholar 

  97. Pelekh, A., Mukasyan, A., and Varma, A., Electrothermography apparatus for kinetics of rapid hightemperature reactions, Rev. Sci. Instrum., 2000, vol. 71, no. 1, pp. 220–223. doi 10.1063/1.1150186

    Article  Google Scholar 

  98. Vadchenko, S.G. and Grigor’ev, Yu.M., Investigation of kinetics and mechanism of high temperature nitridation of niobium, Izv. Akad. Nauk SSSR, Met., 1979, no. 2, pp. 187–195.

    Google Scholar 

  99. Thiers, L., Leitenberger, B.J., Mukasyan, A.S., and Varma, A., Influence of preheating rate on kinetics of high-temperature gas–solid reactions, AIChE J., 2000, vol. 46, no. 12, pp. 2518–2524. doi 10.1002/aic.690461218

    Article  Google Scholar 

  100. Thiers, L., Mukasyan, A.S., Pelekh, A., and Varma, A., Kinetics of high-temperature reaction in titanium–nitrogen system: Nonisothermal conditions, Chem. Eng. J., 2001, vol. 82, no. 1, pp. 303–310. doi 10.1016/S1385-8947(00)00340-5

    Article  Google Scholar 

  101. Merzhanov, A.G., Grigor’ev, Yu.M., Kharatyan, S.L., Mashkinov, L.B., and Vartanyan, Z.S., Heat-evolution kinetics in high-temperature nitriding of zirconium wires, Fiz. Goreniya Vzryva, 1975, vol. 11, no. 4, pp. 563–568. doi 10.1007/BF00744914

    Google Scholar 

  102. Kharatyan, S.L. and Chatilyan, H.A., Non-isothermal kinetics and mechanism of tungsten siliconizing in gasless combustion wave, Int. J. Self-Propag. High- Temp. Synth., 1999, vol. 8, no. 1, pp. 31–42.

    Google Scholar 

  103. Kharatyan, S.L. and Chatilyan, A.A., Regularities of heat release in tungsten siliconizing in a gasless combustion wave, Combust. Explos. Shock Waves, 2000, vol. 36, no. 3, pp. 342–348. doi 10.1007/BF02699387

    Article  Google Scholar 

  104. Galstyan, G.S., Chatilyan, H.A., Kirakosyan, A.G., Kharatyan, S.L., Mukasyan, A.S., and Varma, A., Reaction diffusion in Mo–Si system above the melting point of silicon, Defect Diffus. Forum, 2005, vol. 237, pp. 873–878.

    Article  Google Scholar 

  105. Chatilyan, H.A., Kharatyan, S.L., and Harutyunyan, A.B., Diffusion annealing of Mo/MoSi2 couple and silicon diffusivity in Mo5Si3 layer, Mater. Sci. Eng. A, 2007, vol. 459, no. 1, pp. 227–232. doi 10.1016/j.msea.2007.01.026

    Article  Google Scholar 

  106. Kharatyan, S.L., Chatilyan, H.A., and Galstyan, G.S., Growth kinetics of Mo3Si layer in the Mo5Si3/Mo diffusion couple, Thin Solid Films, 2008, vol. 516, no. 15, pp. 4876–4881. doi 10.1016/j.tsf.2007.09.010

    Article  Google Scholar 

  107. Kharatyan, S.L., Chatilyan, H.A., Aghayan, M.A., and Rodríguez, M.A., Non-isothermal phenomena in Mo/Si diffusion couple: Reaction kinetics and structure formation, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 18–26. doi 10.3103/S1061386213010044

    Article  Google Scholar 

  108. Vadchenko, S.G., Grigor’ev, Yu.M., and Merzhanov, A.G., Mechanism of ignition and combustion in Ti–C, Zr–C systems by electrothermographic method, Combust. Explos. Shock Waves, 1976, vol. 12, no. 5, pp. 606–612. doi 10.1007/BF00743162

    Article  Google Scholar 

  109. Adamyan, T.A. and Kharatyan, S.L., On the singularity of high temperature carbidization of niobium, J. Alloys Comp., 2010, vol. 496, no. 1, pp. 418–422. doi 10.1016/j.jallcom.2010.01.154

    Article  Google Scholar 

  110. Kharatyan, S.L., Chatilyan, H.A., and Arakelyan, L.H., Kinetics of tungsten carbidization under non-isothermal conditions, Mater. Res. Bull., 2008, vol. 43, no. 4, pp. 897–906. doi 10.1016/j.materresbull.2007.05.003

    Article  Google Scholar 

  111. Vadchenko, S.G., Bulaev, A.M., Gal’chenko, Y.A., and Merzhanov, A.G., Interaction mechanism in laminar bimetal nickel–titanium and nickel–aluminum systems, Combust. Explos. Shock Waves, 1987, vol. 23, no. 6, pp. 706–715. doi 10.1007/BF00742525

    Article  Google Scholar 

  112. Wong, J., Larson, E.M., Holt, J.B., Waide, P.A., Rupp, B., and Frahm, R., Time-resolved X-ray diffraction study of solid combustion reactions, Science, 1990, vol. 249, no. 4975, pp. 1406–1410. doi 10.1126/science.249.4975.1406

    Article  Google Scholar 

  113. Bernard, F., Gaffet, E., Gramond, M., Gailhanou, M., and Gachon, J.C., Simultaneous IR and time-resolved X-ray diffraction measurements for studying self-sustained reactions, J. Synchrotron Rad., 2000, vol. 7, no. 1, pp. 27–33. doi 10.1107/S0909049599013540

    Article  Google Scholar 

  114. Curfs, C., Turrillas, X., Vaughan, G.B.M., Terry, A.E., Kvick, Å., and Rodríguez, M.A., Al–Ni intermetallics obtained by SHS; A time-resolved X-ray diffraction study, Intermetallics, 2007, vol. 15, no. 9, pp. 1163–1171. doi 10.1016/j.intermet.2007.02.007

    Article  Google Scholar 

  115. Tingaud, D., Stuppfler, L., Paris, S., Vrel, D., Bernard, F., Penot, C., and Nardou, F., Time-resolved Xray diffraction study of SHS-produced NiAl and NiAl–ZrO2 composites, Int. J. Self-Propag. High- Temp. Synth., 2007, vol. 16, no. 1, pp. 12–17. doi 10.3103/S1061386207010025

    Article  Google Scholar 

  116. Trenkle, J.C., Koerner, L.J., Tate, M.W., Gruner, S.M., Weihs, T.P., and Hufnagel, T.C., Phase transformations during rapid heating of Al/Ni multilayer foils, Appl. Phys. Lett., 2008, vol. 93, no. 8, 081903. doi 10.1063/1.2975830

    Article  Google Scholar 

  117. Kovalev, D.Y., Kochetov, N.A., Ponomarev, V.I., and Mukasyan, A.S., Effect of mechanical activation on thermal explosion in Ni–Al mixtures, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 120–125. doi 10.3103/S106138621002007X

    Article  Google Scholar 

  118. Mukasyan, A.S., White, J.D.E., Kovalev, D.Yu., Kochetov, N.A., Ponomarev, V.I., and Son, S.F., Dynamics of phase transformation during thermal explosion in the Al–Ni system: Influence of mechanical activation, Physica B: Condens. Matter, 2010, vol. 405, no. 2, pp. 778–784. doi 10.1016/j.physb. 2009.10.001

    Article  Google Scholar 

  119. Gaffet, E., Charlot, F., Klein, D., Bernard, F., and Niepce, J.C., Mechanically activated SHS reaction in the Fe–Al system: In situ time resolved diffraction using synchrotron radiation, Mater. Sci. Forum, 1998, vol. 269, pp. 379–384.

    Article  Google Scholar 

  120. Bernard, F., Charlot, F., Gaffet, E., and Niepce, J.C., Optimization of MASHS parameters to obtain a nanometric FeAl intermetallic, Int. J. Self-Propag. High-Temp. Synth., 1998, vol. 7, no. 2, pp. 233–248.

    Google Scholar 

  121. Charlot, F., Gras, C., Gramond, M., Gaffet, E., Bernard, F., and Niepce, J.C., Développements récents de l'étude en temps réel par diffraction des rayons X couplée à une thermographie infrarouge: Application au suivi de la réaction MASHS dans les systèmes FeAl et MoSi2, J. Phys. IV (Paris), 1998, vol. 8, no. PR5, pp. 497–504. doi 10.1051/jp4:1998563

    Google Scholar 

  122. Charlot, F., Bernard, F., Gaffet, E., Klein, D., and Niepce, J.C., In situ time-resolved diffraction coupled with a thermal IR camera to study mechanically activated SHS reaction: Case of Fe–Al binary system, Acta Mater., 1998, vol. 47, no. 2, pp. 619–629. doi 10.1016/S1359-6454(98)00368-1

    Article  Google Scholar 

  123. Vrel, D., Girodon-Boulandet, N., Paris, S., Mazue, J.F., Couqueberg, E., Gailhanou, M., Thiaudiere, D., Gaffet, E., and Bernard, F., A new experimental setup for the time resolved X-ray diffraction study of self-propagating high-temperature synthesis, Rev. Sci. Instrum., 2002, vol. 73, no. 2, pp. 422–428. doi 10.1063/1.1435848

    Article  Google Scholar 

  124. Gauthier, V., Bernard, F., Gaffet, E., Josse, C., and Larpin, J.P., In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-temperature synthesis reaction, Mater. Sci. Eng. A, 1999, vol. 272, no. 2, pp. 334–341. doi 10.1016/S0921-5093(99)00488-8

    Article  Google Scholar 

  125. Bernard, F., Charlot, F., Gras, C., Gauthier, V., and Gaffet, E., In-situ time-resolved X-ray diffraction experiments applied to self-sustained reactions from mechanically activated mixtures, J. Phys. IV (Paris), 2002, vol. 10, no. PR10, pp. 89–99. doi 10.1051/jp4:20001011

    Google Scholar 

  126. Gauthier, V., Bernard, F., Gaffet, E., Vrel, D., Gailhanou, M., and Larpin, J.P., Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction, Intermetallics, 2002, vol. 10, no. 4, pp. 377–389. doi 10.1016/S0966-9795(02)00010-9

    Article  Google Scholar 

  127. Javel, J.F., Dirand, M., Nassik, F.Z., and Gachon, J.C., Real time X-Ray diffraction study of the formation by SHS of the phases γ' and H in the ternary system Al–Ni–Ti, J. Phys. IV (Paris), 1996, vol. 6, no. C2, pp. 229–234. doi 10.1051/jp4:1996232

    Google Scholar 

  128. Javel, J.F., Dirand, M., Kuntz, J.J., Nassik, F.Z., and Gachon, J.C., Real time X-ray diffraction study of the formation by SHS of the phases γ′ and H in the ternary system Al–Ni–Ti, J. Alloys Comp., 1997, vol. 247, nos. 1–2, pp. 72–81. doi 10.1016/S0925-8388(96)02592-3

    Article  Google Scholar 

  129. Vaucher, S., Stir, M., Ishizaki, K., Catala-Civera, J.M., and Nicula, R., Reactive synthesis of Ti–Al intermetallics during microwave heating in an E-field maximum, Thermochim. Acta, 2011, vol. 522, no. 1, pp. 151–154. doi 10.1016/j.tca.2010.11.026

    Article  Google Scholar 

  130. Dubois, S., Karnatak, N., Beaufort, M.F., Bourdarias, L., Renault, P.O., and Vrel, D., Influence of mechanical activation on TiC self-propagating high-temperature synthesis, Mater. Technol., 2003, vol. 18, no. 3, pp. 158–162. doi 10.1080/10667857.2003.11753034

    Article  Google Scholar 

  131. Wong, J., Larson, E.M., Waide, P.A., and Frahm, R., Combustion front dynamics in the combustion synthesis of refractory metal carbides and diborides using time-resolved X-ray diffraction, J. Synchrotron Rad., 2006, vol. 13, no. 4, pp. 326–335. doi 10.1107/S0909049506020796

    Article  Google Scholar 

  132. Larson, E.M., Wong, J., Holt, J.B., Waide, P.A., Nutt, G., Rupp, B., and Termninello, L.J., Time resolved diffraction study of Ta–C solid combustion system, J. Mater. Res., 1993, vol. 8, no. 7, pp. 1533–1541. doi 10.1557/JMR.1993.1533

    Article  Google Scholar 

  133. Jie-Cai, H., Zhang, X.H., and Wood, J.V., In-situ combustion synthesis and densification of TiC–xNi cermets, Mater. Sci. Eng. A, 2000, vol. 280, no. 2, pp. 328–333. doi 10.1016/S0921-5093(99)00606-1

    Article  Google Scholar 

  134. Riley, D.P., Kisi, E.H., Hansen, T.C., and Hewat, A.W., Self-propagating high-temperature synthesis of Ti3SiC2: I. Ultra-high-speed neutron diffraction study of the reaction mechanism, J. Am. Ceram. Soc., 2002, vol. 85, no. 10, pp. 2417–2424. doi 10.1111/j.1151- 2916.2002.tb00474.x

    Article  Google Scholar 

  135. Gauthier, V., Cochepin, B., Dubois, S., and Vrel, D., Self-propagating high-temperature synthesis of Ti3SiC2: Study of the reaction mechanisms by timeresolved X-ray diffraction and infrared thermography, J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2899–2907. doi 10.1111/j.1551-2916.2006.01120.x

    Article  Google Scholar 

  136. Boutefnouchet, H., Curfs, C., Triki, A., Boutefnouchet, A., and Vrel, D., Self-propagating high-temperature synthesis mechanisms within the Ti–C–Ni system: A time resolved X-ray diffraction study, Powder Technol., 2012, vol. 217, pp. 443–450. doi 10.1016/j.powtec.2011.10.061

    Article  Google Scholar 

  137. Mukasyan, A.S., Vadchenko, S.G., and Khomenko, I.O., Combustion modes in the titanium–nitrogen system at low nitrogen pressures, Combust. Flame, 1997, vol. 111, nos. 1–2, pp. 65–72. doi 10.1016/S0010-2180(97)00095-3

    Article  Google Scholar 

  138. Carole, D., Fréty, N., Paris, S., Vrel, D., Bernard, F., and Marin-Ayral, R.M., Investigation of the SHS mechanisms of titanium nitride by in-situ timeresolved diffraction and infrared thermography, J. Alloys Comp., 2007, vol. 436, no. 1, pp. 181–186. doi 10.1016/j.jallcom.2006.07.010

    Article  Google Scholar 

  139. Parkin, I.P., Pankhurst, Q.A., Affleck, L., Aguas, M.D., and Kuznetsov, M.V., Self-propagating high temperature synthesis of BaFe12O19, Mg0.5Zn0.5Fe2O4, and Li0.5Fe2.5O4: Time resolved X-ray diffraction studies (TRXRD), J. Mater. Chem., 2000, vol. 11, no. 1, pp. 193–199. doi 10.1039/B002949L

    Article  Google Scholar 

  140. Spiers, H., Parkin, I.P., Pankhurst, Q.A., Affleck, L., Green, M., Caruana, D.J., Kuznetsov, M.V., Yao, J., Vaughan, G., Terry, A., and Kvick, Å., Self-propagating high-temperature synthesis of magnesium zinc ferrites (MgxZn1−x Fe2O3): Thermal imaging and time resolved X-ray diffraction experiments, J. Mater. Chem., 2004, vol. 14, no. 7, pp. 1104–1111. doi 10.1039/B314159B

    Article  Google Scholar 

  141. Kovalev, D.Y., Shkiro, V.M., and Ponomarev, V.I., Dynamics of phase formation during combustion of Zr and Hf in air, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 4, pp. 169–174. doi 10.3103/S1061386207040012

    Article  Google Scholar 

  142. Gras, C., Gaffet, E., Bernard, F., and Niepce, J.C., Enhancement of self-sustaining reaction by mechanical activation: Case of the Fe–Si system, Mater. Sci. Eng. A, 1999, vol. 264, no. 1, pp. 94–107. doi 10.1016/S0921-5093(98)01108-3

    Article  Google Scholar 

  143. Gras, C., Bernsten, N., Bernard, F., and Gaffet, E., The mechanically activated combustion reaction in the Fe–Si system: In situ time-resolved synchrotron investigations, Intermetallics, 2002, vol. 10, no. 3, pp. 271–282. doi 10.1016/S0966-9795(01)00136-4

    Article  Google Scholar 

  144. Gras, C., Charlot, F., Gaffet, E., Bernard, F., and Niepce, J.C., In situ synchrotron characterization of mechanically activated self-propagating high-temperature synthesis applied in Mo–Si system, Acta Mater., 1999, vol. 47, no. 7, pp. 2113–2123. doi 10.1016/S1359-6454(99)00084-1

    Article  Google Scholar 

  145. Gras, C., Gaffet, E., and Bernard, F., Combustion wave structure during the MoSi2 synthesis by mechanically activated self-propagating high-temperature synthesis (MASHS): In situ time-resolved investigations, Intermetallics, 2006, vol. 14, no. 5, pp. 521–529. doi 10.1016/j.intermet.2005.09.001

    Article  Google Scholar 

  146. Kachelmyer, C.R., Khomenko, I.O., Rogachev, A.S., and Varma, A., A time-resolved X-ray diffraction study of Ti5Si3 product formation during combustion synthesis, J. Mater. Res., 1997, vol. 12, no. 12, pp. 3230–3240. doi 10.1557/JMR.1997.0423

    Article  Google Scholar 

  147. Riley, D.P., Oliver, C.P., and Kisi, E.H., In-situ neutron diffraction of titanium silicide, Ti5Si3, during selfpropagating high-temperature synthesis (SHS), Intermetallics, 2006, vol. 14, no. 1, pp. 33–38. doi 10.1016/j.intermet.2005.04.004

    Article  Google Scholar 

  148. Rupp, B., Wong, J., Holt, J.B., and Waide, P., The solid combustion synthesis of small REBa2Cu3Ox samples (RE = Y, Er), J. Alloys Comp., 1994, vol. 209, nos. 1–2, pp. 25–33. doi 10.1016/0925- 8388(94)91072-3

    Article  Google Scholar 

  149. Curfs, C., Cano, I.G., Vaughan, G.B.M., Turrillas, X., Kvick, Å., and Rodríguez, M.A., TiC–NiAl composites obtained by SHS: A time-resolved XRD study, J. Eur. Ceram. Soc., 2002, vol. 22, no. 7, pp. 1039–1044. doi 10.1016/S0955-2219(01)00414-9

    Article  Google Scholar 

  150. Terry, A.E., Vaughan, G.B., Kvick, Å., Walton, R.I., Norquist, A.J., and O’Hare, D., In-situ time-resolved X-ray diffraction: The current state of the art, Synchrotron Rad. News, 2002, vol. 15, no. 4, pp. 4–13. doi 10.1080/08940880208602958

    Article  Google Scholar 

  151. Contreras, L., Turrillas, X., Vaughan, G.B.M., Kvick, Å., and Rodríguez, M.A., Time-resolved XRD study of TiC–TiB2 composites obtained by SHS, Acta Mater., 2004, vol. 52, no. 16, pp. 4783–4790. doi 10.1016/j.actamat.2004.06.049

    Article  Google Scholar 

  152. Mishra, S.K., Das, S.K., Ramachandrarao, P., Belov, D.Y., and Mamyan, S.S., Self-propagating high-temperature synthesis of a zirconium diboride–alumina composite: A dynamic X-ray diffraction study, Philos. Mag. Lett., 2004, vol. 84, no. 1, pp. 41–46. doi 10.1080/0950083031000137820

    Article  Google Scholar 

  153. Carole, D., Frety, N., Paris, S., Vrel, D., Bernard, F., and Marin-Ayral, R.M., Microstructural study of titanium carbonitride produced by combustion synthesis, Ceram. Int., 2007, vol. 33, no. 8, pp. 1525–1534. doi 10.1016/j.ceramint.2006.06.002

    Article  Google Scholar 

  154. Mas-Guindal, M.J., Turrillas, X., Hansen, T., and Rodríguez, M.A., Time-resolved neutron diffraction study of Ti–TiC–Al2O3 composites obtained by SHS, J. Eur. Ceram. Soc., 2008, vol. 28, no. 15, pp. 2975–2982. doi 10.1016/j.jeurceramsoc.2008.05.001

    Article  Google Scholar 

  155. Kovalev, D.Y., Prokudina, V.K., Ratnikov, V.I., and Ponomarev, V.I., Thermal decomposition of TiH2: A TRXRD study, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 4, pp. 253–257. doi 10.3103/S1061386210040047

    Article  Google Scholar 

  156. Bazhin, P.M., Stolin, A.M., and Alymov, M.I., Preparation of nanostructured composite ceramic materials and products under conditions of a combination of combustion and high-temperature deformation (SHS extrusion), Nanotechnol. Russ., 2014, vol. 9, nos. 11–12, pp. 583–600. doi 10.1134/S1995078014060020

    Article  Google Scholar 

  157. Manukyan, K.V., Shuck, C.E., Cherukara, M.J., Rouvimov, S., Kovalev, D.Y., Strachan, A., and Mukasyan, A.S., Exothermic self-sustained waves with amorphous nickel, J. Phys. Chem. C, 2016, vol. 120, no. 10, pp. 5827–5838. doi 10.1021/acs.jpcc. 6b00752

    Article  Google Scholar 

  158. LaGrange, T., Campbell, G.H., Reed, B.W., Taheri, M., Pesavento, J.B., Kim, J.S, and Browning, N.D., Nanosecond time-resolved investigations using in situ a dynamic transmission electron microscope (DTEM), Ultramicroscopy, 2008, vol. 108, no. 11, pp. 1441–1449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mukasyan.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukasyan, A.S., Shuck, C.E. Kinetics of SHS reactions: A review. Int. J Self-Propag. High-Temp. Synth. 26, 145–165 (2017). https://doi.org/10.3103/S1061386217030049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386217030049

Keywords

Navigation