Skip to main content
Log in

Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution combustion synthesis (SCS) is a preparation technique that can be used to synthesize a variety of inorganic nanomaterials and structured catalysts. It is based on a self-propagating exothermic redox reaction between organic salts and a fuel mixed together in an aqueous solution, which results in the formation of nanocrystalline and highly pure solid nanomaterials. SCS can be considered as an attractive synthesis method for catalysts due to the simple nature of the synthetic route and short reaction times. The process is easily scaled up to any kind of application which makes it economically attractive. This mini-review provides a short overview on the synthesis of structured catalysts by SCS and their recent utilization for energy applications and pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogachev, A.S., Shugaev, V.A., Kachelmyer, C.R., and Varma, A., Mechanisms of structure formation during combustion synthesis of materials, Chem. Eng. Sci., 1994, vol. 49, no. 24, pp. 4949–4958. doi 10.1016/0009-2509(94)00389-0

    Article  Google Scholar 

  2. Merzhanov, A.G., Fluid dynamics phenomena in the processes of self-propagating high-temperature synthesis, Combust. Sci. Technol., 1995, vol. 105, nos. 4–6, pp. 295–325. doi 10.1080/00102209508907756

    Article  Google Scholar 

  3. Gillan, E.G. and Kaner, R.B., Synthesis of refractory ceramics via rapid metathesis reactions between solidstate precursors, Chem. Mater., 1996, vol. 8, no. 2, pp. 333–343. doi 10.1021/cm950232a

    Article  Google Scholar 

  4. Patil, K.C., Aruna, S.T., and Ekambaram, S., Combustion synthesis, Curr. Opin. Solid State Mater. Sci., 1997, vol. 2, no. 2, pp. 158–165. doi 10.1016/S1359-0286(97)80060-5

    Article  Google Scholar 

  5. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng. 1998, vol. 24, no. C, pp. 79–226. doi 10.1016/S0065- 2377(08)60093-9

    Article  Google Scholar 

  6. Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials, Mater. Lett., 1988, vol. 6, no. 11, pp. 427–432. doi 10.1016/0167-577X(88)90045-6

    Article  Google Scholar 

  7. Kirchnerova, J. and Klvana, D., Synthesis and characterization of perovskite catalysts, Solid State Ionics, 1999, vol. 123, no. 1, pp. 307–317. doi 10.1016/S0167-2738(99)00102-2

    Article  Google Scholar 

  8. Kaliaguine, S., van Neste, A., Szabo, V, Gallot, J.E., Bassir, M., and Muzychuk, R., Perovskite-type oxides synthesized by reactive grinding: I. Preparation and characterization, Appl. Catal. A: Gen., 2001, vol. 209, no. 1, pp. 345–358. doi 10.1016/S0926- 860X(00)00779-1

    Article  Google Scholar 

  9. Patil, K.C., Aruna, S.T., and Mimani, T., Combustion synthesis: An update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 6, pp. 507–512. doi 10.1016/S1359-0286(02)00123-7

    Article  Google Scholar 

  10. Porcu, M., Orrù, R., Cincotti, A., and Cao, G., Selfpropagating reactions for environmental protection: Treatment of wastes containing asbestos, Ind. Eng. Chem. Res., 2005, vol. 44, no. 1, pp. 85–91. doi 10.1021/ie040058c

    Article  Google Scholar 

  11. Mukasyan, A.S. and White, J.D.E., Combustion joining of refractory materials, Int. J. Self-Propag. High- Temp. Synth., 2007, vol. 16, no. 3, pp. 154–168. doi 10.3103/S1061386207030089

    Article  Google Scholar 

  12. Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 1, pp. 23–35. doi 10.3103/S1061386207010049

    Article  Google Scholar 

  13. McCauley, J.W. and Puszynski, J.A., Historical perspective and contribution of US researchers into the field of self-propagating high-temperature synthesis (SHS)/combustion synthesis (CS): Personal reflections, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 1, pp. 58–75. doi 10.3103/S106138620801007X

    Article  Google Scholar 

  14. Rogachev, A.S. and Baras, F., Models of SHS: An overview, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 3, pp. 141–153. doi 10.3103/S1061386207030077

    Article  Google Scholar 

  15. Merzhanov, A.G. and Borovinskaya, I.P., Historical retrospective of SHS: An autoreview, Int. J. Self- Propag. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 242–265. doi 10.3103/S1061386208040079

    Article  Google Scholar 

  16. Borisova, A.L. and Borisov, Y.S., Self-propagating high-temperature synthesis for the deposition of thermal- sprayed coatings, Powder Metall. Met. Ceram., 2008, vol. 47, no. 1, pp. 80–94. doi 10.1007/s11106- 008-0012-5

    Article  Google Scholar 

  17. Yermekova, Z., Mansurov, Z., and Mukasyan, A.S., Combustion synthesis of silicon nanopowders, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 94–101. doi 10.3103/S1061386210020032

    Article  Google Scholar 

  18. Specchia, S., Finocchio, E., Busca, G., and Specchia, V., Combustion Synthesis, in Handbook of Combustion, Lackner, M., Winter, F., and Agarwal, A.K., Eds., Weinheim: Wiley–VCH, 2010, pp. 439–472. doi 10.1002/9783527628148.hoc088

    Google Scholar 

  19. Shteinberg, A.S., Berlin, A.A., Denisaev, A.A., and Mukasyan, A.S., Kinetics of fast reactions in condensed systems: Some recent results (An autoreview), Int. J. Self-Propag. High-Temp. Synth., 2011, vol. 20, no. 4, pp. 259–265. doi 10.3103/S1061386211040030

    Article  Google Scholar 

  20. Specchia, S., Galletti, C., and Specchia, V., Solution combustion synthesis as intriguing technique to quickly produce performing catalysts for specific applications, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 59–67. doi 10.1016/S0167-2991(10)75008-4

    Article  Google Scholar 

  21. Liu, G., Li, J., and Chen, K., Combustion synthesis of refractory and hard materials: A review, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, pp. 90–102. doi 10.1016/j.ijrmhm.2012.09.002

    Article  Google Scholar 

  22. Rosa, R., Veronesi, P., and Leonelli, C., A review on combustion synthesis intensification by means of microwave energy, Chem. Eng. Process. Process Intensif., 2013, vol. 71, pp. 2–18. doi 10.1016/j.cep. 2013.02.007

    Article  Google Scholar 

  23. González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties, and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A: Gen., 2013, vol. 452, pp. 117–131. doi 10.1016/j.apcata.2012.11.024

    Article  Google Scholar 

  24. Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, no. 101, pp. 58090–58100. doi 10.1039/C4RA10145F

    Article  Google Scholar 

  25. Ghose, R., Hwang, H.T., and Varma, A., Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies, Appl. Catal. A: Gen., 2014, vol. 472, pp. 39–46. doi 10.1016/j.apcata.2013.12.004

    Article  Google Scholar 

  26. Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T., Combustion synthesis in nanostructured reactive systems, Adv. Powder Technol., 2015, vol. 26, no. 3, pp. 954–976. doi 10.1016/j.apt.2015.03.013

    Article  Google Scholar 

  27. Pawade, V.B., Swart, H.C., and Dhoble, S.J., Review of rare earth activated blue emission phosphors prepared by combustion synthesis, Renew. Sustain. Energy Rev., 2015, vol. 52, pp. 596–612. doi 10.1016/j.rser.2015.07.170

    Article  Google Scholar 

  28. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. doi 10.1021/acs.chemrev.6b00279

    Article  Google Scholar 

  29. Rogachev, A.S., Vadchenko, S.G., and Shchukin, A.S., SHS reaction and explosive crystallization in thin films: Resemblance and distinction, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 44–48. doi 10.3103/S1061386217010095

    Article  Google Scholar 

  30. Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., Whittaker, A.G., Drysdale, T.D., Kingman, S.W., and Gregory, D.H., Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing, Chem. Rev., 2014, vol. 114, no. 2, pp. 1170–1206. doi 10.1021/cr4002353

    Article  Google Scholar 

  31. Merzhanov, A.G., Shkiro, V.M., and Borovinskaya, I.P., A method for synthesis of refractory inorganic compounds, USSR Inventor’s Certificate 255 221, 1967.

    Google Scholar 

  32. Merzhanov, A.G. and Borovinskaya, I.P., Self-propagating high-temperature synthesis of inorganic compounds, Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 2, pp. 366–369.

    Google Scholar 

  33. Grigoryan, H., Mukasyan, A., Rogachev, A., and Sytschev, A., International Conference on historical aspects of SHS in different countries dedicated to the 40th anniversary of SHS, Int. J. Self-Propag. High- Temp. Synth., 2007, vol. 16, no. 4, pp. 256–258. doi 10.3103/S1061386207040127

    Article  Google Scholar 

  34. Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, no. 3, pp. 44–50. doi 10.1016/j.cossms.2008.12.002

    Article  Google Scholar 

  35. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786. doi 10.1039/b401358c

    Article  Google Scholar 

  36. Specchia, S., Civera, A., Saracco, G., and Specchia, V., Palladium/perovskite/zirconia catalytic premixed fiber burners for efficient and clean natural gas combustion. Catal. Today, 2006, vol. 117, no. 4, pp. 427–432. doi 10.1016/j.cattod.2006.06.041

    Article  Google Scholar 

  37. Tacchino, S., Vella, L.D., and Specchia, S., Catalytic combustion of CH4 and H2 into micro-monoliths, Catal. Today, 2010, vol. 157, nos. 1–4, pp. 440–445. doi 10.1016/j.cattod.2010.03.002

    Article  Google Scholar 

  38. Specchia, S., Conti, F., and Specchia, V., Kinetic studies on Pd/CexZr1–x O2 catalyst for methane combustion, Ind. Eng. Chem. Res., 2010, vol. 49, no. 21, pp. 11101–11111. doi 10.1021/ie100532x

    Article  Google Scholar 

  39. Specchia, S. and Toniato, G., Natural gas combustion catalysts for environmental-friendly domestic burners, Catal. Today, 2009, vol. 147S, pp. S99–S106. doi 10.1016/j.cattod.2009.07.033

    Article  Google Scholar 

  40. Vita, A., Cristiano, G., Italiano, C., Specchia, S., Cipitì, F., and Specchia, V., Methane oxy-steam reforming reaction: Performances of Ru/γ-Al2O3 catalysts loaded on structured cordierite monoliths, Int. J. Hydrogen Energy, 2014, vol. 39, no. 32, pp. 18592–18603. doi 10.1016/j.ijhydene.2014.03.114

    Article  Google Scholar 

  41. Vita, A., Italiano, C., Fabiano, C., Laganà, M., and Pino, L., Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO2 catalysts for biogas oxidative steam reforming, Mater. Chem. Phys., 2015, vol. 163, pp. 337–347. doi 10.1016/j.matchemphys.2015.07.048

    Article  Google Scholar 

  42. Vita, A., Cristiano, G., Italiano, C., Pino, L., and Specchia, S., Syngas production by methane oxysteam reforming on Me/CeO2 (Me = Rh, Pt, Ni) catalyst lined on cordierite monoliths, Appl. Catal. B: Environ., 2015, vol. 162, pp. 551–563. doi 10.1016/j.apcatb.2014.07.028

    Article  Google Scholar 

  43. Vita, A., Italiano, C., Fabiano, C., Pino, L., Laganà, M., and Recupero, V., Hydrogen-rich gas production by steam reforming of n-dodecane: I. Catalytic activity of Pt/CeO2 catalysts in optimized bed configuration, Appl. Catal. B: Environ., 2016, vol. 199, pp. 350–360. doi 10.1016/j.apcatb.2016.06.042

    Article  Google Scholar 

  44. Italiano, C., Balzarotti, R., Vita, A., Latorrata, S., Fabiano, C., Pino, L., and Cristiani, C., Preparation of structured catalysts with Ni and Ni–Rh/CeO2 catalytic layers for syngas production by biogas reforming processes, Catal. Today, 2016, vol. 273, pp. 3–11. doi 10.1016/j.cattod.2016.01.037

    Article  Google Scholar 

  45. Ercolino, G., Stelmachowski, P., and Specchia, S., Catalytic performance of Pd/Co3O4 on SiC and ZrO2 open cell foams for process intensification of methane combustion in lean conditions, Ind. Eng. Chem. Res., 2017, vol. 56, no. 23, pp. 6625–6636. doi 10.1021/acs.iecr.7b01087

    Article  Google Scholar 

  46. Ercolino, G., Karimi, S., Stelmachowski, P., and Specchia, S., Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4, Chem. Eng. J., 2017, vol. 326, pp. 339–349. doi 10.1016/j.cej.2017.05.149

    Article  Google Scholar 

  47. Jain, S.R., Adiga, K.C., and Pai Verneker, V.R., A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame, 1981, vol. 40, no. C, pp. 71–79. doi 10.1016/0010- 2180(81)90111-5

    Article  Google Scholar 

  48. Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Nickelreaction pathways, AIChE J., 2011, vol. 57, no. 8, pp. 2207–2214. doi 10.1002/aic.12416

    Article  Google Scholar 

  49. Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys, AIChE J., 2011, vol. 57, no. 12, pp. 3473–3479. doi 10.1002/aic.12537

    Article  Google Scholar 

  50. Specchia, S., Ahumada Irribarra, M.A., Palmisano, P., Saracco, G., and Specchia, V., Aging of premixed metal fiber burners for natural gas combustion catalyzed with Pa/LaMnO3 · 2ZrO2, Ind. Eng. Chem. Res., 2007, vol. 46, no. 21, pp. 6666–6673. doi 10.1021/ie061665y

    Article  Google Scholar 

  51. Specchia, S., Finocchio, E., Busca, G., Saracco, G., and Specchia, V., Effect of S-compounds on Pd over LaMnO3 · 2ZrO2 and CeO2 · 2ZrO2 catalysts for CH4 combustion, Catal. Today, 2009, vol. 143, nos. 1–2, pp. 86–93. doi 10.1016/j.cattod.2008.10.035

    Article  Google Scholar 

  52. Balzarotti, R., Italiano, C., Pino, L., Cristiani, C., and Vita, A., Ni/CeO2-thin ceramic layer depositions on ceramic monoliths for syngas production by oxy steam reforming of biogas, Fuel Process. Technol., 2016, vol. 149, pp. 40–48. doi 10.1016/j.fuproc.2016.04.002

    Article  Google Scholar 

  53. Zavyalova, U., Girgsdies, F., Korup, O., Horn, R., and Schlögl, R., Microwave-assisted self-propagating combustion synthesis for uniform deposition of metal nanoparticles on ceramic monoliths, J. Phys. Chem. C, 2009, vol. 113, no. 40, pp. 17493–17501. doi 10.1021/jp905692g

    Article  Google Scholar 

  54. Ercolino, G., Stelmachowski, P., Grzybek, G., Kotarba, A., and Specchia, S., Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane, Appl. Catal. B: Environ., 2017, vol. 206, pp. 712–725. doi 10.1016/j.apcatb.2017.01.055

    Article  Google Scholar 

  55. Manukyan, K.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies, J. Phys. Chem. C, 2013, vol. 117, no. 46, pp. 24417–24427. doi 10.1021/jp408260m

    Article  Google Scholar 

  56. Weidenhof, B., Reiser, M., Stöwe, K., Maier, W.F., Kim, M., Azurdia, J., Gulari, E., Seker, E., Barks, A., and Laine, R.M., High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts, J. Am. Chem. Soc., 2009, vol. 131, no. 26, pp. 9207–9219. doi 10.1021/ja809134s

    Article  Google Scholar 

  57. Varma, A. and Lebrat, J.-P., Combustion synthesis of advanced materials, Chem. Eng. Sci., 1992, vol. 47, no. 9, pp. 2179–2194. doi 10.1016/0009-2509(92)87034-N

    Article  Google Scholar 

  58. Morsi, K., The diversity of combustion synthesis processing: A review, J. Mater. Sci., 2012, vol. 47, no. 1, pp. 68–92. doi 10.1007/s10853-011-5926-5

    Article  Google Scholar 

  59. Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials: I. Reaction parameters, Prog. Mater. Sci., 1995, vol. 39, no. 4, pp. 243–273. doi 10.1016/0079-6425(94)00011-5

    Article  Google Scholar 

  60. Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials: II. Classification, applications, and modelling, Prog. Mater. Sci., 1995, vol. 39, nos. 4–5, pp. 275–316. doi 10.1016/0079-6425(94)00012-3

    Article  Google Scholar 

  61. Erri, P., Pranda, P., and Varma, A., Oxidizer-fuel interactions in aqueous combustion synthesis: I. Iron(III) nitrate model fuels, Ind. Eng. Chem. Res., 2004, vol. 43, no. 12, pp. 3092–3096. doi 10.1021/ie030822f

    Article  Google Scholar 

  62. Li, F., Ran, J., Jaroniec, M., Qiao, S.Z., Liang, X.Y., and Ye, Z.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion, Nanoscale, 2015, vol. 7, no. 42, pp. 17590–17610. doi 10.1039/C5NR05299H

    Article  Google Scholar 

  63. Bera, P. and Hegde, M.S., Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst, Catal. Lett., 2002, vol. 79, no. 1/4, pp. 75–81. doi 10.1023/A:1015352223861

    Article  Google Scholar 

  64. Amjad, U.-E.-S., Vita, A., Galletti, C., Pino, L., and Specchia, S., Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts, Ind. Eng. Chem. Res., 2013, vol. 52, no. 44, pp. 15428–15436. doi 10.1021/ie400679h

    Article  Google Scholar 

  65. Farin, B., Monteverde Videla, A.H.A., Specchia, S., and Gaigneaux, E.M., Bismuth molybdates prepared by solution combustion synthesis for the partial oxidation of propene, Catal. Today, 2015, vol. 257, no. P1, pp. 11–17. doi 10.1016/j.cattod.2015.03.045

    Article  Google Scholar 

  66. Ercolino, G., Grodzka, A., Grzybek, G., Stelmachowski, P., Specchia, S., and Kotarba, A., The effect of the preparation method of Pd-doped cobalt spinel on the catalytic activity in methane oxidation under lean fuel conditions, Top. Catal., 2017, vol. 60, no. 3, pp. 333–341. doi 10.1007/s11244-016-0620-0

    Article  Google Scholar 

  67. Toniolo, J.C., Takimi, A.S., and Bergmann, C.P., Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by solution combustion method, Mater. Res. Bull., 2010, vol. 45, no. 6, pp. 672–676. doi 10.1016/j.materresbull.2010.03.001

    Article  Google Scholar 

  68. Sanchez-Dominguez, M., Liotta, L.F., Di Carlo, G., Pantaleo, G., Venezia, A.M., Solans, C., and Boutonnet, M., Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation, Catal. Today, 2010, vol. 158, no. 1, pp. 35–43. doi 10.1016/j.cattod.2010.05.026

    Article  Google Scholar 

  69. Liotta, L.F., Di Carlo, G., Pantaleo, G., and Deganello, G., Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture, Appl. Catal. B: Environ. 2007, vol. 70, no. 1, pp. 314–322. doi 10.1016/j.apcatb.2005.12.023

    Article  Google Scholar 

  70. Kumar, R., Zulfequar, M., Sharma, L., Singh, V.N., and Senguttuvan, T.D., Growth of nanocrystalline CaCu3Ti4O12 ceramic by the microwave flash combustion method: Structural and impedance spectroscopic studies, Cryst. Growth Des., 2015, vol. 15, no. 3, pp. 1374–1379. doi 10.1021/cg501771k

    Article  Google Scholar 

  71. Fino, D., Fino, P., Saracco, G., and Specchia, V., Diesel particulate traps regenerated by catalytic combustion, Korean J. Chem. Eng., 2003, vol. 20, no. 3, pp. 445–450. doi 10.1007/BF02705545

    Article  Google Scholar 

  72. Specchia, S., Civera, A., and Saracco, G., In situ combustion synthesis of perovskite catalysts for efficient and clean methane premixed metal burners, Chem. Eng. Sci., 2004, vol. 59, nos. 22–23, pp. 5091–5098. doi 10.1016/j.ces.2004.08.028

    Article  Google Scholar 

  73. Specchia, S., Finocchio, E., Busca, G., Palmisano, P., and Specchia, V., Surface chemistry and reactivity of ceria-zirconia-supported palladium oxide catalysts for natural gas combustion, J. Catal., 2009, vol. 263, no. 1, pp. 134–145. doi 10.1016/j.jcat.2009.02.002

    Article  Google Scholar 

  74. Morfin, F., Nguyen, T.-S., Rousset, J.-L., and Piccolo, L. Synergy between hydrogen and ceria in Ptcatalyzed CO oxidation: An investigation on Pt–CeO2 catalysts synthesized by solution combustion, Appl. Catal. B: Environ., 2016, vol. 197, pp. 2–13. doi 10.1016/j.apcatb.2016.01.056

    Article  Google Scholar 

  75. Purohit, R., Sharma, B., Pillai, K., Tyagi, A. Ultrafine ceria powders via glycine-nitrate combustion, Mater. Res. Bull., 2001, vol. 36, no. 15, pp. 2711–2721. doi 10.1016/S0025-5408(01)00762-0

    Article  Google Scholar 

  76. Finocchio, E., Monteverde Videla, A.H.A., and Specchia, S., Surface chemistry and reactivity of Pd/BaCeO3·2ZrO2 catalyst upon sulphur hydrothermal treatment for the total oxidation of methane, Appl. Catal. A: Gen., 2015, vol. 505, pp. 183–192. doi 10.1016/j.apcata.2015.07.039

    Article  Google Scholar 

  77. Piumetti, M., Fino, D., and Russo, N., Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B: Environ., 2015, vol. 163, pp. 277–287. doi 10.1016/j.apcatb.2014.08.012

    Article  Google Scholar 

  78. Berger, D., Matei, C., Voicu, G., and Bobaru, A., Synthesis of La1−x SrxMO3 (M = Mn, Fe, Co, Ni) nanopowders by alanine-combustion technique, J. Eur. Ceram. Soc., 2010, 30, no. 2, pp. 617–622. doi 10.1016/j.jeurceramsoc.2009.07.032

    Article  Google Scholar 

  79. Ardit, M., Borcănescu, S., Cruciani, G., Dondi, M., Lazău, I., Păcurariu, C., and Zanelli, C., Ni–Ti codoped hibonite ceramic pigments by combustion synthesis: Crystal structure and optical properties, J. Am. Ceram. Soc., 2016, vol. 99, no. 5, pp. 1749–1760. doi 10.1111/jace.14128

    Article  Google Scholar 

  80. Vosoughifar, M., Simple route for preparation cobalt tungstate nanoparticles with different amino acids and its photocatalyst application, J. Mater. Sci. Mater. Electron., 2017, vol. 28, no. 11, pp. 8011–8016. doi 10.1007/s10854-017-6505-6

    Article  Google Scholar 

  81. Ianoş, R., Lazău, I., Păcurariu, C., and Barvinschi, P., Fuel mixture approach for solution combustion synthesis of Ca3Al2O6 powders, Cem. Concr. Res., 2009, vol. 39, no. 7, pp. 566–572. doi 10.1016/j.cemconres.2009.03.014

    Article  Google Scholar 

  82. da Silva, A.L.A., Castro, G.G.G., and Souza, M.M.V.M., Synthesis of Sr-doped LaCrO3 powders by combustion method, J. Therm. Anal. Calorim., 2012, vol. 109, no. 1, pp. 33–38. doi 10.1007/s10973-011-1527-4

    Article  Google Scholar 

  83. Lazarova, T., Georgieva, M., Tzankov, D., Voykova, D., Aleksandrov, L., Cherkezova-Zheleva, Z., and Kovacheva, D., Influence of the type of fuel used for the solution combustion synthesis on the structure, morphology and magnetic properties of nanosized NiFe2O4, J. Alloys Compd., 2017, vol. 700, pp. 272–283. doi 10.1016/j.jallcom.2017.01.055

    Article  Google Scholar 

  84. Liu, G., Xin, K., Zhang, L., Wang, B., and He, Y., Glycerol-assisted solution combustion synthesis of improved LiMn2O4, Mater. Sci., 2013, vol. 31, no. 3, pp. 386–390. doi 10.2478/s13536-013-0115-7

    Google Scholar 

  85. Zavyalova, U., Scholz, P., and Ondruschka, B., Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane, Appl. Catal. A: Gen., 2007, vol. 323, pp. 226–233. doi 10.1016/j.apcata.2007.02.021

    Article  Google Scholar 

  86. Zavyalova, U., Nigrovski, B., Pollok, K., Langenhorst, F., Müller, B., Scholz, P., and Ondruschka, B., Gel-combustion synthesis of nanocrystalline spinel catalysts for VOCs elimination, Appl. Catal. B: Environ., 2008, vol. 83, no. 3, pp. 221–228. doi 10.1016/j.apcatb.2008.02.015

    Article  Google Scholar 

  87. Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V., Performance of Pt/CeO2 catalyst for propane oxidative steam reforming, Appl. Catal. A: Gen., 2006, vol. 306, pp. 68–77. doi 10.1016/j.apcata.2006.03.031

    Article  Google Scholar 

  88. Renuka, L., Anantharaju, K.S., Vidya, Y.S., Nagaswarupa, H.P., Prashantha, S.C., Sharma, S.C., Nagabhushana, H., and Darshan, G.P., A simple combustion method for the synthesis of multi-functional ZrO2/CuO nanocomposites: Excellent performance as sunlight photocatalysts and enhanced latent fingerprint detection, Appl. Catal. B: Environ., 2017, vol. 210, pp. 97–115. doi 10.1016/j.apcatb.2017.03.055

    Article  Google Scholar 

  89. Cipitì, F., Barbera, O., Briguglio, N., Giacoppo, G., Italiano, C., and Vita, A., Design of a biogas steam reforming reactor: A modelling and experimental approach, Int. J. Hydrogen Energy, 2016, vol. 41, no. 27, pp. 11577–11583. doi 10.1016/j.ijhydene.2015.12.053

    Article  Google Scholar 

  90. Barbato, P.S., Colussi, S., Di Benedetto, A., Landi, G., Lisi, L., Llorca, J., and Trovarelli, A., Origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction, J. Phys. Chem. C, 2016, vol. 120, no. 24, pp. 13039–13048. doi 10.1021/acs.jpcc.6b02433

    Article  Google Scholar 

  91. Bera, P., Malwadkar, S., Gayen, A., Satyanarayana, C.V.V., Rao, B.S., and Hegde, M.S., Lowtemperature water gas shift reaction on combustion synthesized Ce1–x PtxO2–δ catalyst, Catal. Lett., 2004, vol. 96, nos. 3–4, pp. 213–219. doi 10.1023/B:CATL.0000030123.41351.14

    Article  Google Scholar 

  92. Tummino, M.L., Laurenti, E., Deganello, F., Bianco Prevot, A., and Magnacca, G., Revisiting the catalytic activity of a doped SrFeO3 for water pollutants removal: Effect of light and temperature, Appl. Catal. B: Environ., 2017, vol. 207, pp. 174–181. doi 10.1016/j.apcatb.2017.02.007

    Article  Google Scholar 

  93. Deganello, F., Marcì, G., and Deganello, G., Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach, J. Eur. Ceram. Soc., 2009, 29, no. 3, pp. 439–450. doi 10.1016/j.jeurceramsoc.2008.06.012

    Article  Google Scholar 

  94. Yilmaz, E., Sonmez, M.S., Derin, B., Sahin, F.C., and Yucel, O., Synthesis of Mn2O3 nanopowders with urea and citric acid by solution combustion route, in Proc. 146th Ann. TMS Meeting and Exhibition, 2017, pp. 39–46. doi 10.1007/978-3-319-51493-2_510.1007/978-3-319-51493-2_5

    Google Scholar 

  95. Marinšek, M., Zupan, K., and Maèek, J., Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis, J. Power Sources, 2002, vol. 106, no. 1, pp. 178–188. doi 10.1016/S0378-7753(01)01056-4

    Article  Google Scholar 

  96. Kolb, G., Baier, T., Schürer, J., Tiemann, D., Ziogas, A., Specchia, S., Galletti, C., Germani, G., and Schuurman, Y., A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units: II. Development of water-gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor, Chem. Eng. J., 2008, vol. 138, nos. 1–3, pp. 474–489. doi 10.1016/j.cej.2007.06.037

    Article  Google Scholar 

  97. Shi, L., Tao, K., Kawabata, T., Shimamura, T., Zhang, X.J., and Tsubaki, N., Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for Fischer–Tropsch synthesis, ACS Catal., 2011, vol. 1, pp. 1225–1233. doi 10.1021/cs200294d

    Article  Google Scholar 

  98. Xanthopoulou, G. and Vekinis, G., Deep oxidation of methane using catalysts and carriers produced by selfpropagating high-temperature synthesis, Appl. Catal. A: Gen., 2000, vol. 199, no. 2, pp. 227–238. doi 10.1016/S0926-860X(99)00562-1

    Article  Google Scholar 

  99. Anuradha, T., Ranganathan, S., Mimani, T., and Patil, K., Combustion synthesis of nanostructured barium titanate, Scr. Mater., 2001, vol. 44, nos. 8–9, pp. 2237–2241. doi 10.1016/S1359-6462(01)00755-2

    Article  Google Scholar 

  100. Deshpande, K., Mukasyan, A., and Varma, A., Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties, Chem. Mater., 2004, vol. 16, no. 24, pp. 4896–4904. doi 10.1021/CM040061M

    Article  Google Scholar 

  101. Manoharan, S.S., Swati Prasanna, S.J., Rao, M.L., and Sahu, R.K., Microwave-assisted synthesis of fine particle oxides employing wet redox mixtures, J. Am. Ceram. Soc., 2002, vol. 85, no. 10, pp. 2469–2471. doi 10.1111/j.1151-2916.2002.tb00482.x

    Article  Google Scholar 

  102. Jardim, E.O., Rico-Francés, S., Coloma, F., Anderson, J.A., Silvestre-Albero, J., and Sepúlveda-Escribano, A., Influence of the metal precursor on the catalytic behavior of Pt/Ceria catalysts in the preferential oxidation of CO in the presence of H2 (PROX), J. Colloid Interface Sci., 2015, vol. 443, pp. 45–55. doi 10.1016/j.jcis.2014.12.013

    Article  Google Scholar 

  103. Santos, A.C.S.F., Damyanova, S., Teixeira, G.N.R., Mattos, L.V., Noronha, F.B., Passos, F.B., and Bueno, J.M.C., The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane, Appl. Catal. A: Gen., 2005, vol. 290, no. 1, pp. 123–132. doi 10.1016/j.apcata.2005.05.015

    Article  Google Scholar 

  104. Kumar, A., Mukasyan, A.S., and Wolf, E.E., Combustion synthesis of Ni, Fe, and Cu multi-component catalysts for hydrogen production from ethanol reforming, Appl. Catal. A: Gen., 2011, vol. 401, no. 1, pp. 20–28. doi 10.1016/j.apcata.2011.04.038

    Article  Google Scholar 

  105. Galletti, C., Specchia, S., Saracco, G., and Specchia, V., CO preferential oxidation in H2-rich gas for fuel cell applications: Microchannel reactor performance with Rh-based catalyst, Int. J. Hydrogen Energy, 2008, vol. 33, no. 12, pp. 3045–3048. doi 10.1016/j.ijhydene. 2008.01.032

    Article  Google Scholar 

  106. Vita, A., Ashraf, M.A., Italiano, C., Fabiano, C., and Specchia, S., Syngas production by biogas steam and oxy steam reforming processes on Rh/CeO2 catalyst coated on ceramics monolith and open foams, in AIChE Proceedings, 2015, no. 402e. https://aiche.confex.com/aiche/2015/webprogram/Paper427656.html. Accessed May 30 2017.

    Google Scholar 

  107. Cross, A., Kumar, A., Wolf, E.E., and Mukasyan, A.S., Combustion synthesis of a nickel supported catalyst: Effect of metal distribution on the activity during ethanol decomposition, Ind. Eng. Chem. Res., 2012, vol. 51, no. 37, pp. 12004–12008. doi 10.1021/ie301478n

    Article  Google Scholar 

  108. Deshpande, K., Mukasyan, A.S., and Varma, A., High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells, J. Power Sources, 2006, vol. 158, no. 1, pp. 60–68. doi 10.1016/j.jpowsour. 2005.09.025

    Article  Google Scholar 

  109. Wen, W., Wu, J.-M., and Cao, M.-H., Rapid one-step synthesis and electrochemical performance of NiO/Ni with tunable macroporous architectures, Nano Energy, 2013, vol. 2, no. 6, pp. 1383–1390. doi 10.1016/j.nanoen.2013.07.002

    Article  Google Scholar 

  110. Raza, M.A., Rahman, I.Z., and Beloshapkin, S., Synthesis of nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) perovskite by solution combustion method for solid oxide fuel cell application, J. Alloys Compd., 2009, vol. 485, no. 1, pp. 593–597. doi 10.1016/j.jallcom. 2009.06.059

    Article  Google Scholar 

  111. Li, X., Xiao, Q., Liu, B., Lin, H., and Zhao, J., Onestep solution-combustion synthesis of complex spinel titanate flake particles with enhanced lithium-storage properties, J. Power Sources, 2015, vol. 273, pp. 128–135. doi 10.1016/j.jpowsour.2014.08.129

    Article  Google Scholar 

  112. Roy, B., Martinez, U., Loganathan, K., Datye, A.K., and Leclerc, C.A., Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueousphase reforming of ethanol: I. Catalytic activity, Int. J. Hydrogen Energy, 2012, vol. 37, no. 10, pp. 8143–8153. doi 10.1016/j.ijhydene.2012.02.056

    Article  Google Scholar 

  113. Roy, B., Artyushkova, K., Pham, H.N., Li, L., Datye, A.K., and Leclerc, C.A., Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: II. Characterization, Int. J. Hydrogen Energy, 2012, vol. 37, no. 24, pp. 18815–18826. doi 10.1016/j.ijhydene.2012.09.098

    Article  Google Scholar 

  114. Monteverde Videla, A.H.A., Stelmachowski, P., Ercolino, G., and Specchia, S., Benchmark comparison of Co3O4 spinel structured oxides with different morphologies for oxygen evolution reaction under alkaline conditions, J. Appl. Electrochem., 2017, vol. 47, no. 3, pp. 295–304. doi 10.1007/s10800-016-1040-3

    Article  Google Scholar 

  115. Aliotta, C., Liotta, L.F., Deganello, F., Parola, V., and La Martorana, A., Direct methane oxidation on La1−x SrxCr1−y FeyO3−δ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells, Appl. Catal. B: Environ., 2016, vol. 180, pp. 424–433. doi 10.1016/j.apcatb.2015.06.012

    Article  Google Scholar 

  116. Bharathidasan, T., Mandalam, A., Balasubramanian, M., Dhandapani, P., Sathiyanarayanan, S., and Mayavan, S., Zinc oxide-containing porous boron–carbon–nitrogen sheets from glycine–nitrate combustion: Synthesis, self-cleaning, and sunlight-driven photocatalytic activity, ACS Appl. Mater. Interf., 2015, vol. 7, no. 33, pp. 18450–18459. doi 10.1021/acsami.5b04609

    Article  Google Scholar 

  117. Bera, P., Patil, K.C., Jayaram, V., Subbanna, G.N., and Hegde, M.S., Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal–ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation, J. Catal., 2000, vol. 196, no. 2, pp. 293–301. doi 10.1006/jcat.2000.3048

    Article  Google Scholar 

  118. Saracco, G., Badini, C., and Specchia, V., Catalytic traps for diesel particulate control, Chem. Eng. Sci., 1999, vol. 54, nos. 15–16, pp. 3035–3041. doi 10.1016/S0009-2509(98)00462-X

    Article  Google Scholar 

  119. Saracco, G. and Specchia, V., Simultaneous removal of nitrogen oxides and fly-ash from coal-based powerplant flue gases, Appl. Therm. Eng., 1998, vol. 18, no. 11, pp. 1025–1035. doi 10.1016/S1359- 4311(98)00035-0

    Article  Google Scholar 

  120. Saracco, G., Specchia, S., and Specchia, V., Catalytically modified fly-ash filters for NOx reduction with NH3, Chem. Eng. Sci., 1996, vol. 51, no. 24, pp. 5289–5297. doi 10.1016/S0009-2509(96)00373-9

    Article  Google Scholar 

  121. Bera, P., Aruna, S.T., Patil, K.C., and Hegde, M.S., Studies on Cu/CeO2: A new NO reduction catalyst, J. Catal., 1999, vol. 186, no. 1, pp. 36–44. doi 10.1006/jcat.1999.2532

    Article  Google Scholar 

  122. Granger, P. and Parvulescu, V.I., Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies, Chem. Rev., 2011, vol. 111, no. 5, pp. 3155–3207. doi 10.1021/cr100168g

    Article  Google Scholar 

  123. Galletti, C., Djinović, P., Specchia, S., Batista, J., Levec, J., Pintar, A., and Specchia, V., Influence of the preparation method on the performance of Rh catalysts on CeO2 for WGS reaction, Catal. Today, 2011, vol. 176, no. 1, pp. 336–339. doi 10.1016/j.cattod. 2010.11.069

    Article  Google Scholar 

  124. Nguyen, T.-S., Morfin, F., Aouine, M., Bosselet, F., Rousset, J.L., and Piccolo, L., Trends in the CO oxidation and PROX performances of the platinumgroup metals supported on ceria, Catal. Today, 2015, vol. 253, pp. 106–114. doi 10.1016/j.cattod. 2014.12.038

    Article  Google Scholar 

  125. Stelmachowski, P., Kopacz, A., Legutko, P., Indyka, P., Wojtasik, M., Ziemiański, L., Zak, G., Sojka, Z., and Kotarba, A., The role of crystallite size of iron oxide catalyst for soot combustion, Catal. Today, 2015, vol. 257, no. P1, pp. 111–116. doi 10.1016/j.cattod. 2015.02.018

    Google Scholar 

  126. Specchia, S., Tacchino, S., and Specchia, V., Facing the catalytic combustion of CH4/H2 mixtures into monoliths, Chem. Eng. J., 2011, vol. 167, nos. 2–3, pp. 622–633. doi 10.1016/j.cej.2010.10.051

    Article  Google Scholar 

  127. Ugues, D., Specchia, S., and Saracco, G., Optimal microstructural design of a catalytic premixed FeCrAlloy fiber burner for methane combustion, Ind. Eng. Chem. Res., 2004, vol. 43, no. 9, pp. 1990–1998. doi 10.1021/ie034202q

    Article  Google Scholar 

  128. Ziaei-Azad, H., Khodadadi, A., Esmaeilnejad-Ahranjani, P., and Mortazavi, Y., Effects of Pd on enhancement of oxidation activity of LaBO3 (B = Mn, Fe, Co, and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles, Appl. Catal. B: Environ., 2011, vol. 102, nos. 1–2, pp. 62–70. doi 10.1016/j.apcatb.2010.11.025

    Article  Google Scholar 

  129. du Plessis, J.P. and Woudberg, S., Pore-scale derivation of the Ergun equation to enhance its adaptability and generalization, Chem. Eng. Sci., 2008, vol. 63, no. 9, pp. 2576–2586. doi 10.1016/j.ces.2008.02.017

    Article  Google Scholar 

  130. Tzimpilis, E., Moschoudis, N., Stoukides, M., and Bekiaroglou, P., Preparation, active phase composition, and Pd content of perovskite-type oxides, Appl. Catal. B: Environ., 2008, vol. 84, no. 3, pp. 607–615. doi 10.1016/j.apcatb.2008.05.016

    Article  Google Scholar 

  131. Cristiani, C., Visconti, C.G., Finocchio, E., Gallo Stampino, P., and Forzatti, P., Towards the rationalization of the washcoating process conditions, Catal. Today, 2009, vol. 147S, pp. S24–S29. doi 10.1016/j.cattod.2009.07.031

    Article  Google Scholar 

  132. Almeida, L.C., Echave, F.J., Sanz, O., Centeno, M.A., Odriozola, J.A., and Montes, M., Washcoating of metallic monoliths and microchannel reactors, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 25–33. doi 10.1016/S0167-2991(10)75004-7

    Article  Google Scholar 

  133. IEA–WEO-2016. http://www.worldenergyoutlook. org/publications/weo-2016/. Accessed May 3, 2017.

  134. The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php. Accessed May 3, 2017.

  135. Reay, D.A., Ramshaw, C., and Harvey, A.P., Process Intensification: Engineering for Efficiency, Sustainability, and Flexibility, Amsterdam: Elsevier–Butterworth–Heinemann, 2008.

    Google Scholar 

  136. Stankiewicz, A.I. and Moulijn, J.A., Process intensification: Transforming chemical engineering, Chem. Eng. Prog., 2000, vol. 96, pp. 22–34.

    Google Scholar 

  137. van Gerven, T. and Stankiewicz, A., Structure, energy, synergy, time-the fundamentals of process intensification, Ind. Eng. Chem. Res., 2009, vol. 48, no. 5, pp. 2465–2474. doi 10.1021/ie801501y

    Article  Google Scholar 

  138. Avila, P., Montes, M., and Miró, E.E., Monolithic reactors for environmental applications: A review on preparation technologies, Chem. Eng. J., 2005, vol. 109, no. 1, pp. 11–36. doi 10.1016/j.cej.2005.02.025

    Article  Google Scholar 

  139. Twigg, M.V. and Richardson, J.T., Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 4166–4177. doi 10.1021/ie061122o

    Article  Google Scholar 

  140. Buciuman, F.C. and Kraushaar-Czarnetzki, B., Ceramic foam monoliths as catalyst carriers: I. Adjustment and description of the morphology, Ind. Eng. Chem. Res., 2003, vol. 42, no. 9, pp. 1863–1869. doi 10.1021/ie0204134

    Article  Google Scholar 

  141. Huo, W.-L., Zhang, X.-Y., Chen, Y.-G., Lu, Y.-J., Liu, W.-T., Xi, X.-Q., Wang, Y.-L., Xu, J., and Yang, J.-L., Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 2016, vol. 99, no. 11, pp. 3512–3515. doi 10.1111/jace.14555

    Article  Google Scholar 

  142. Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., and Tronconi, E., An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors, Chem. Eng. J., vol. 198–199, pp. 512–528. doi 10.1016/j.cej.2012.05.045

  143. Richardson, J.T., Peng, Y., and Remue, D., Properties of ceramic foam catalyst supports: Pressure drop, Appl. Catal. A: Gen., 2000, vol. 204, no. 1, pp. 19–32. doi 10.1016/S0926-860X(00)00508-1

    Article  Google Scholar 

  144. Richardson, J.T., Remue, D., and Hung, J.K., Properties of ceramic foam catalyst supports: Mass and heat transfer, Appl. Catal. A: Gen., vol. 250, no. 2, pp. 319–329. doi 10.1016/S0926-860X(03)00287-4

  145. Tronconi, E., Groppi, G., and Visconti, C.G., Structured catalysts for non-adiabatic applications, Curr. Opin. Chem. Eng., 2014, vol. 5, pp. 55–67. doi 10.1016/j.coche.2014.04.003

    Article  Google Scholar 

  146. Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Luther, E.P., Mang, J.T., and Son, S.F., Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition, J. Am. Chem. Soc., 2006, vol. 128, no. 20, pp. 6589–6594. doi 10.1021/ja056550k

    Article  Google Scholar 

  147. Specchia, S., Fuel processing activities at European level: A panoramic overview, Int. J. Hydrogen Energy, 2014, vol. 39, no. 21, pp. 17953–17968. doi 10.1016/j.ijhydene.2014.04.040

    Article  Google Scholar 

  148. Carmo, M., Fritz, D.L., Mergel, J., and Stolten, D., A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 2013, vol. 38, no. 12, pp. 4901–4934. doi 10.1016/j.ijhydene.2013.01.151

    Article  Google Scholar 

  149. Xuan, J., Leung, M.K.H., Leung, D.Y.C., and Ni, M., A review of biomass-derived fuel processors for fuel cell systems, Renew. Sustain. Energy Rev., 2009, vol. 13, no. 6, pp. 1301–1313. doi 10.1016/j.rser.2008.09.027

    Article  Google Scholar 

  150. Shen, Y., Linville, J.L., Urgun-Demirtas, M., Mintz, M.M., and Snyder, S.W., An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs, Renew. Sustain. Energy Rev., 2015, vol. 50, pp. 346–362. doi 10.1016/j.rser.2015.04.129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Specchia.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Specchia, S., Ercolino, G., Karimi, S. et al. Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control. Int. J Self-Propag. High-Temp. Synth. 26, 166–186 (2017). https://doi.org/10.3103/S1061386217030062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386217030062

Keywords

Navigation