Skip to main content
Log in

Statistical inference of spectral estimation for continuous-time MA processes with finite second moments

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this paper we investigate a continuous-time MA (moving average) process (X t ) t≥0 sampled at an equally spaced time grid {Δ,2Δ, …, nΔ}, where the grid distance Δ > 0 is fixed and n denotes the number of observations, in the frequency domain. We derive for the process (X kΔ) k∈ℕ with finite second moments the asymptotic behavior of the periodogram and of the lag-window spectral density estimator. The periodogram is not a consistent estimator for the spectral density of (X kΔ) k∈ℕ. Different periodogram frequencies are asymptotically independent and exponentially distributed like for ARMA processes in discrete time. This result is basic for frequency bootstraps. In contrast, the lag-window spectral density estimator is a consistent estimator for the spectral density of (X kΔ) k∈ℕ and moreover, it is asymptotically normally distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 1971).

    MATH  Google Scholar 

  2. D.W. K. Andrews, “Nonstrong Mixing Autoregressive Processes”, J. Appl. Probab. 21(4), 930–934 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika 37, 1–16 (1950).

    MATH  MathSciNet  Google Scholar 

  4. P. Billingsley, Probability and Measure, 2nd ed. (Wiley, New York, 1986).

    MATH  Google Scholar 

  5. P. Billingsley, Convergence of Probability Measures, 2nd ed. (Wiley, New York, 1999).

    Book  MATH  Google Scholar 

  6. A. Bose, S. Guha, R. S. Hazra, and K. Saha, “Circulant Type Matrices with Heavy Tailed Entries”, Statist. Probab. Lett. 81(11), 1706–1716 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  7. D. R. Brillinger, Time Series, 2nd ed. (Holden-Day, Oakland, Calif., 1981).

    MATH  Google Scholar 

  8. D. R. Brillinger and M. Rosenblatt, “Asymptotic Theory of Estimates of kth Order Spectra”, in Spectral Analysis Time Series (Proc. Advanced Sem., Madison, Wis., 1966) (Wiley, New York, 1967), pp. 153–188.

    Google Scholar 

  9. P. J. Brockwell, “Lévy-Driven CARMA Processes”, Ann. Inst. Statist. Math. 53, 113–124 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. J. Brockwell, “Lévy-Driven Continuous-Time ARMA Processes”, in Handbook of Financial Time Series, Ed. by T. G. Andersen, R. Davis, J.-P. Kreiß, and T. Mikosch (Springer, Berlin, 2009), pp. 457–480.

    Chapter  Google Scholar 

  11. P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd ed. (Springer, New York, 1991).

    Book  Google Scholar 

  12. P. J. Brockwell and A. Lindner, “Lévy-Driven Time Series Models for Financial Data”, in Handbook of Statistics, Ed. by T. Subba Rao and C. R. Rao (North Holland, Amsterdam, 2012), Vol. 30, pp. 543–563.

    Google Scholar 

  13. S. Cohen and A. Lindner, “A Central Limit Theorem for the Sample Autocorrelations of a Lévy Driven Continuous Time Moving Average Process with Finite Fourth Moment”, J. Statist. Plann. Inference 143, 1295–1306 (2013).

    Article  MathSciNet  Google Scholar 

  14. R. Dahlhaus and D. Janas, “A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis”, Ann. Statist. 24(5), 1934–1963 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Dedecker, P. Doukhan, G. Lang, J. R. León, S. Louhichi, and C. Prieur, Weak Dependence: with Examples and Applications, in Lecture Notes in Statistics (Springer, New York, 2007), Vol. 190.

    Google Scholar 

  16. J. L. Doob, Stochastic Processes (Wiley, New York, 1953).

    MATH  Google Scholar 

  17. V. Fasen and F. Fuchs, “On the Limit Behavior of the Periodogram of High-Frequency Sampled Stable CARMA Processes”, Stochastic Process. Appl. 123(1), 229–273 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Fasen and F. Fuchs, “Spectral Estimates for High-Frequency Sampled CARMA Processes”, J. TimeSer. Anal. (2013) (in press).

    Google Scholar 

  19. F. Fuchs and R. Stelzer, “Mixing Conditions for Multivariate Infinitely Divisible Processes with an Application to Mixed Moving Averages and the supOu Stochastic Volatility Model. ESAIM: Probability and Statistics 17, 455–471 (2013).

    MathSciNet  Google Scholar 

  20. E. J. Hannan, Multiple Time Series (Wiley, New York-London-Sydney, 1970).

    Book  MATH  Google Scholar 

  21. C. M. Hurvich and S. L. Zeger, “Frequency Domain Bootstrap Methods for Time Series”, Working Paper, New York Univ., 1987.

    Google Scholar 

  22. C. Kirch and D. N. Politis, “TFT-Bootstrap: Resampling Time Series in the Frequency Domain to Obtain Replicates in the Time Domain”, Ann. Statist. 39(3), 1427–1470 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  23. J.-P. Kreiß and G. Neuhaus, Einführung in die Zeitreihenanalyse (Springer, Berlin, 2006).

    MATH  Google Scholar 

  24. J.-P. Kreiss and E. Paparoditis, “Bootstrap Methods for Dependent Data: a Review”, J. Korean Statist. Soc. 40(4), 357–378 (2011).

    Article  MathSciNet  Google Scholar 

  25. W. Liu and W. B. Wu, “Asymptotics of Spectral Density Estimates”, EconometricTheory 26(4), 1218–1245 (2010).

    MATH  Google Scholar 

  26. T. Marquardt and R. Stelzer, “Multivariate CARMA Processes”, Stochastic Process. Appl. 117, 96–120 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Masry, “Poisson Sampling and Spectral Estimation of Continuous-Time Processes”, IEEE Trans. Information Theory IT-24 (2), 173–183 (1978).

    Google Scholar 

  28. E. Masry, “Discrete-Time Spectral Estimation of Continuous-Time Processes - the Orthogonal Series Method”, Ann. Statist. 8(5), 1100–1109 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  29. E. Masry and M.-C. C. Lui, “Discrete-Time Spectral Estimation of Continuous-Parameter Processes - a New Consistent Estimate”, IEEE Trans. Information Theory IT-22 (3), 298–312 (1976).

    Google Scholar 

  30. E. Paparoditis, “Frequency Domain Bootstrap for Time Series”, in Empirical Process Techniques for Dependent Data (Birkhäuser Boston, Boston, MA, 2002), pp. 365–381.

    Chapter  Google Scholar 

  31. E. Paparoditis and D. N. Politis, “Nonlinear Spectral Density Estimation: Thresholding the Correlogram”, J. Time Series Anal. 33(3), 386–397 (2012).

    Article  MathSciNet  Google Scholar 

  32. E. Parzen, “On Choosing an Estimate of the Spectral Density Function of a Stationary Time Series”, Ann. Math. Statist. 28, 921–932 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  33. E. Parzen, “On Consistent Estimates of the Spectrum of a Stationary Time Series”, Ann. Math. Statist. 28, 329–348 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Peligrad and W. B. Wu, “Central Limit Theorem for Fourier Transforms of Stationary Processes”, Ann. Probab. 38(5), 2009–2022 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  35. D. N. Politis and J. P. Romano, “A general Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation”, Ann. Statist. 20(4), 1985–2007 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  36. M. B. Priestley, Spectral Analysis and Time Series, repr. ed. in Probability and Mathematical Statistics (Elsevier, Amsterdam, 2004).

    Google Scholar 

  37. M. Rosenblatt, “Asymptotic Normality, Strong Mixing and Spectral Density Estimates”, Ann. Probab. 12(4), 1167–1180 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Rosenblatt, Stationary Sequences and Random Fields (Birkhäuser, Boston, 1985).

    Book  MATH  Google Scholar 

  39. K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  40. X. Shao and W. B. Wu, “Asymptotic Spectral Theory for Nonlinear Time Series”, Ann. Statist. 35(4), 1773–1801 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  41. V. Solo, “Some Aspects of Continuous-Discrete Time Series Modelling”, in Time Series Analysis of Irregularly Observed Data, Ed. by E. Parzen (Springer, New York, 1983), pp. 325–345.

    Google Scholar 

  42. J. Theiler, S. Eubank, A. Longtin, B. Galdrikan, and J. D. Farmer, “Testing for Nonlinearity in Time Series: The Method of Surrogate Data”, Phys. D. 58, 77–94 (1992).

    Article  MATH  Google Scholar 

  43. A. W. van der Vaart, Asymptotic Statistics (Cambridge Univ. Press, Cambridge, 1998).

    Book  MATH  Google Scholar 

  44. W. B. Wu, Fourier Transforms of Stationary Processes, Proc. Amer. Math. Soc. 133(1), 285–293 (2005) (electronic).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Fasen.

About this article

Cite this article

Fasen, V. Statistical inference of spectral estimation for continuous-time MA processes with finite second moments. Math. Meth. Stat. 22, 283–309 (2013). https://doi.org/10.3103/S1066530713040029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530713040029

Keywords

2000 Mathematics Subject Classification

Navigation