Skip to main content
Log in

Application of SHS processes for in situ preparation of alumomatrix composite materials discretely reinforced by nanodimensional titanium carbide particles (Review)

  • Powder Metallurgy of Nonferrous Metals and Alloys
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Types and fabrication methods of discretely reinforced alumomatrix composite materials (AMCMs), the wide application of which is hindered by a whole series of unresolved problems, are reviewed. These problems are the high cost of both reinforcing materials and the entire production process of composites; a not always sufficient level of strength properties, especially at elevated temperatures; the distribution nonuniformity of reinforcing particles over the volume of the aluminum matrix; and insufficient bond strength with it. It is discussed what contribution can be introduced into the solution of these problems by applying in situ processes, particularly, the SHS process, in order to fabricate cast nanostructured AMCMs. This is shown in more detail by the concrete example of the Al–10%TiC composite discretely reinforced by nanodimensional titanium carbide particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kainer, K.U., Metal Matrix Composites, Weinheim: KGaA, 2006.

    Book  Google Scholar 

  2. Adebisi, A.A., Metal matrix composite brake rotor: historical development and product life cycle analysis, Int. J. Autom. Mech. Eng., 2011, vol. 4, pp. 471–480.

    Article  Google Scholar 

  3. Kurganova, Yu.A., Fetisov, G.P., and Gavrilov, G.N., Composite materials in aviation and their production, Tekhnol. Metal., 2015, no. 1, pp. 22–25.

    Google Scholar 

  4. Panfilov, A.V., Current state and prospects of development of cast discrete reinforced aluminum matrix composite materials, Liteishchik Rossii, 2008, no. 7, pp. 23–28.

    Google Scholar 

  5. Singh, H., Sarabjit, Jit N., and Tyagi, A.K., An overview of metal matrix composite: processing and SiC based mechanical properties, J. Eng. Res. Stud., 2011, vol. 2, pp. 72–78.

    Google Scholar 

  6. Rana, R.S. Purohit, R., and Das, S., Review of recent studies in Al matrix composites, Int. J. Sci. Eng. Res., 2012, vol. 3, no. 6, pp. 1–16.

    Google Scholar 

  7. Kennedy, A.R. and Wyatt, S.M., Characterizing particle-matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods, Composites A, 2001, vol. 32, nos. 3–4, pp. 555–559.

    Article  Google Scholar 

  8. Jerome, S., Ravisankar, B., Mahato, P.K., and Natarajan, S., Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al–TiC composites, Tribol. Int., 2010, vol. 43, no. 11, pp. 2029–2036.

    Article  Google Scholar 

  9. Song, I.H., Kim, D.K., Hahn, Y.D., and Kim, H.D., Synthesis of in-situ TiC–Al composite by dipping exothermic reaction process, Met. Mater. Int., 2004, vol. 10, no. 3, pp. 301–306.

    Google Scholar 

  10. Borgonovo, C., Apelian, D., and Makhlouf, M.M., Aluminum nanocomposites for elevated temperature applications, JOM, 2011, vol. 63, no. 2, pp. 57–64.

    Google Scholar 

  11. Tjong, S.Ch., Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Adv. Eng. Mater., 2007, vol. 9, no. 8, pp. 639–652.

    Article  Google Scholar 

  12. Camargo, P.H.C., Satyanarayana, K.G., and Wypych, F., Nanocomposites: synthesis, structure, properties and new application opportunities, Mat. Res., 2009, vol. 12, no. 1, pp. 1–39.

    Article  Google Scholar 

  13. Krushenko, G.G., The role of nanopowder particles when forming structures of aluminum alloys, Metall. Mashinostr., 2011, no. 1, pp. 20–24.

    Google Scholar 

  14. Casati, R. and Vedani, M., Metal matrix composites reinforced by nano-particles: Review, Metals, 2014, no. 4, pp. 65–83.

    Article  Google Scholar 

  15. Sanaty-Zadeh, A., Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect, Mater. Sci. Eng. A, 2012, vol. 531, no. 1, pp. 112–118.

    Article  Google Scholar 

  16. Zhang, Z. and Chen, D.L., Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A, 2008, vol. 483, pp. 148–152.

    Article  Google Scholar 

  17. Zhou, D., Qiu, F., and Jiang, Q., The nano-sized TiC particle reinforced Al–Cu matrix composite with superior tensile ductility, Mater. Sci. Eng. A, 2015, vol. 622, pp. 189–193.

    Article  Google Scholar 

  18. Kurdyumov, A.V., Pikunov, M.V., Chursin, V.M., and Bibikov, V.L., Proizvodstvo otlivok iz splavov tsvetnykh metallov (Production of Castings from Alloys of Nonferrous Metals), Moscow: MISiS, 1996, 2nd ed.

    Google Scholar 

  19. Vinod Kumar, G.S., Murty, B.S., and Charaborty, M., Development of Al–Ti–C grain refiners and study of their grain refining efficiency on Al and Al–7Si alloy, J. Alloys Compd., 2005, vol. 396, nos. 1–2, pp. 143–150.

    Article  Google Scholar 

  20. Mikheev, R.S. and Chernyshova, T.A., Discretely reinforced composite materials of the Al–TiC system, Zagotovitel’n. Proizvod. Mashinostr., 2008, no. 11, pp. 44–53.

    Google Scholar 

  21. Krushenko, G.G., Means and technologies of increasing the content of nanopowders in aluminum modified rods, Nanotekhnika, 2011, no. 3, pp. 55–64.

    Google Scholar 

  22. Mazaheri, Y., Meratian, R., Emadi, A., and Najarian, R., Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C, and Al–TiC–B4C, Mater. Sci. Eng. A, 2013, vol. 560, pp. 278–287.

    Article  Google Scholar 

  23. Yang, Y. and Li, X., Ultrasonic cavitation based nanomanufacturing of bulk aluminum matrix nanocomposites, J. Manufact. Sci. Eng., 2007, vol. 129, pp. 497–501.

    Article  Google Scholar 

  24. Kosnikov, G.A., Baranov, V.A., Petrovich, S.Yu., and Kalmykov, A.V., Cast alumomatrix nanostructured composite alloys, Liteynoe Proizvod., 2012, no. 2, pp. 4–9.

    Google Scholar 

  25. Lü, L., Lai, M.O., and Yeo, J.L., In situ synthesis of TiC composite for structural application, Composite Struct., 1999, vol. 47, nos. 1–4, pp. 613–618.

    Article  Google Scholar 

  26. Kim, W.J., Hong, S.I., Lee, J.M., and Kim, S.H., Dispersion of TiC particles in an in situ aluminum matrix composite by shear plastic flow during high-ratio differential speed rolling, Mater. Sci. Eng. A, 2013, vol. 559, no. 1, pp. 325–332.

    Article  Google Scholar 

  27. Kim, S.-H., Cho, Y.-H., and Lee, J.-M., Particle distribution and hot workability of in situ synthesized Al–TiC composite, Metall. Mater. Trans. A, 2014, vol. 45, no. 6, pp. 2873–2884.

    Article  Google Scholar 

  28. Liu, Zh., Han, Q., and Li, J., Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites, Composites B: Eng., 2011, vol. 42, no. 7, pp. 2080–2084.

    Article  Google Scholar 

  29. Rai, R.N., Prasado, Rao A.K., Dutta, G.L., and Chakraborty, M., Forming behavior of Al–TiC in-situ composites, Mater. Sci. Forum, 2013, vol. 765, pp. 418–422.

    Article  Google Scholar 

  30. Katalog nanoporoshkov oksidov, karbidov, nitridov (Catalog of Nanopowders of Oxides, Carbides, and Nitrides), http://plasmothermru/catalog/ (accessed: 18.07.2015).

  31. Amosov, A.P. and Borovinskaya, I.P., and Merzhanov, A.G., Poroshkovaya tekhnologiya samorasporstaryayushchegosya vysokotemperaturnogo sinteza materialov (Powder Technology of Self-Propagating High-Temperature Synthesis of Materials), Moscow: Mashinostroenie-1, pp. 1, 2007.

    Google Scholar 

  32. Amosov, A.P., Nikitin, V.I., Nikitin, K.V., and Ryazanov, S.A., Scientific and technical basis for the use of SHS processes for creating cast aluminum matrix composite alloys reinforced with discrete ceramic nanoparticles, Naukoemkie Tekhnol. Mashinostr., 2013, no. 8, pp. 3–10.

    Google Scholar 

  33. Amosov, A.P., Titova, Yu.V., Maydan, D.A., Ermoshkin, A.A., and Timoshkin, I.Yu., Application of the nanopowder production of azide SHS technology for the reinforcement and modification of aluminum alloys, Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 2, p. 222.

    Article  Google Scholar 

  34. Nikitin, V.I., Amosov, A.P., Merzhanov, A.G., and Lukjanov, G.S., Research and production of SHS master alloy for manufacture aluminum alloys, Int. J. SHS, 1995, vol. 4, no. 1, pp. 105–112.

    Google Scholar 

  35. Peijie, Li., Kandalova, E.G., Nikitin, V.I., Luts, A.R., Makarenko, A.G., and Yanfei, Zh., Effect of fluxes on structure formation of SHS Al–Ti–B grain refiner, Mater. Lett., 2003, vol. 57, nos. 22–23, pp. 3694–3698.

    Article  Google Scholar 

  36. Peijie, Li., Kandalova, E.G., Nikitin, V.I., Makarenko, A.G., Luts, A.R., and Yanfei, Zh., Preparation of Al–TiC composites by self-propagating high-temperature synthesis, Scr. Mater, 2003, vol. 49, no. 7, pp. 699–703.

    Article  Google Scholar 

  37. Luts, A.R. and Makarenko, A.G., Samorasprostranyayushchiysya vysokotemperaturny sintez alyuminievykh splavov (Self-Propagating High-Temperature Synthesis of Aluminum Alloys), Moscow: Mashinostroenie, 2008.

    Google Scholar 

  38. Amosov, A.P., Borovinskaya, I.P., Merzhanov, A.G., and Sytchev, A.E., Principles and methods for regulation of dispersed structure of SHS powders: from monocrystallites to nanoparticles, Int. J. SHS, 2005, vol. 14, no. 3, pp. 165–186.

    Google Scholar 

  39. Luts, A.R., Amosov, A.P., Ermoshkin Ermoshkin, Ant. A., Nikitin, K.V., and Timoshkin, I.Yu., Self-propagating high-temperature synthesis of highly dispersed titanium-carbide phase from powder mixtures in the aluminum melt, Rus. J. Non-Ferrous Met., 2014, vol. 55, pp. 606–612.

    Article  Google Scholar 

  40. Xiangha, L., Zhenqing, W., Zuogui, Zh., and Xiufang, B., The relationship between microstructure and refining performance of Al–Ti–C master alloys, Mater. Sci. Eng., 2002, vol. A332, no. 1, pp. 70–74.

    Article  Google Scholar 

  41. Amosov, A.P., Luts, A.R., Ermoshkin, And.A., and Ermoshkin, Ant.A., Role of halide salts Na3AlF6 and Na2TiF6 in self-propagating high-temperature synthesis of Al–10% TiC nanocomposite alloy in aluminum melt, Life Sci. J., 2014, vol. 11, no. 12s, pp. 570–575.

    Google Scholar 

  42. Lekatou, A., Karantzalis, A.E., Evangelou, A., Gousia, V., Kaptay, G., Gácsi, Z., Baumli, P., and Simon, A., Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): microstructure, wear and corrosion behavior, Mater. Design, 2015, vol. 65, pp. 1121–1135.

    Google Scholar 

  43. Mayrhofer, P.H., Mitterer, C., and Musil, J., Structure–property relationships in singleand dual-phase nanocrystalline hard coatings, Surf. Coat. Technol., 2003, vol. 174–175, pp. 725–731.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Amosov.

Additional information

Original Russian Text © A.P. Amosov, A.P. Luts, E.I. Latukhin, A.A. Ermoshkin, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Tsvetnaya Metallurgiya, 2016, No. 1, pp. 39–49.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosov, A.P., Luts, A.P., Latukhin, E.I. et al. Application of SHS processes for in situ preparation of alumomatrix composite materials discretely reinforced by nanodimensional titanium carbide particles (Review). Russ. J. Non-ferrous Metals 57, 106–112 (2016). https://doi.org/10.3103/S1067821216020024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821216020024

Keywords

Navigation