Skip to main content
Log in

Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials

  • Theory and Processes of Forming and Sintering of Powder Materials
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Causes of the appearance of anisotropy of properties in products manufactured according to the technology of selective laser melting of metallic powder materials are investigated. The results of an evaluation of mechanical properties of the samples made of Ti–6Al–4V and VT6 titanium-based alloys and Inconel 718 refractory nickel alloy in various directions are presented. The dependence of their mechanical properties on the orientation of billets relative to the working platform of the installation is presented. An analysis of microslices of the Ti–6Al–4V alloy showed that the direction of the granular structure for a rectangular sample corresponds to the growth direction, while, when manufacturing thin elements of a net construction, other thermal processes flow due to their smaller cross section, which affects the crystallization conditions and microstructure being formed. Grain directions and shapes change depending on the slope angle of the element of the net structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zlenko, M.A., Popovich, A.A., and Mutylina, I.N., Additivnye tekhnologii v mashinostroenii (Additive Technologies in Mechanical Engineering), St. Petersburg: St. Petersburg Politekh. Univ., 2013.

    Google Scholar 

  2. Simonelli, M., Tse, Y.Y., and Tuck, C., Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Mater. Sci. Eng. A, 2014, vol. 616, pp. 1–11.

    Article  Google Scholar 

  3. Kunze, K., Etter, T., Grasslin, J., and Shklover, V., Texture, anisotropy in microstructure and mechanical properties of IN-738LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A, 2015, vol. 620, pp. 213–222.

    Article  Google Scholar 

  4. Thijs, L., Kempen, K., Kruth, J.P., and Van Humbeeck, J., Finestructured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater., 2013, vol. 61, no. 5, pp. 1809–1819.

    Article  Google Scholar 

  5. Thijs, L., Sistiaga, M.L.M., Wauthle, R., Xie, Q., Kruth, J.P., and Van Humbeeck, J., Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 2013, vol. 61, no. 12, pp. 4657–4668.

    Article  Google Scholar 

  6. Mertens, A., Reginster, S., Paydas, H., Contrepois, Q., Dormal, T., Lemaire, O., and Lecomte-Beckers, J., Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures, Powder Metall., 2014, vol. 57, no. 3, pp. 184–189.

    Article  Google Scholar 

  7. Carter, L.N., Martin, C., Withers, P.J., and Attallah, M.M., The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd., 2014, vol. 615, pp. 338–347.

    Article  Google Scholar 

  8. Song, B., Dong, S., Coddet, P., Liao, H., and Coddet, C., Fabrication of NiCr alloy parts by selective laser melting: columnar microstructure and anisotropic mechanical behavior, Mater. Des., 2014, vol. 53, pp. 1–7.

    Article  Google Scholar 

  9. Vrancken, B., Thijs, L., Kruth, J.P., and Van Humbeeck, J., Microstructure and mechanical properties of a novel titanium metallic composite by selective laser melting, Acta Mater., 2014, vol. 68, pp. 150–158.

    Article  Google Scholar 

  10. Dadbakhsh, S., Vrancken, B., Kruth, J.P., Luyten, J., and Van Humbeeck, J., Texture and anisotropy in selective laser melting of NiTi alloy, Mater. Sci. Eng. A, 2016, vol. 650, pp. 225–232.

    Article  Google Scholar 

  11. Popovich, A.A., Sufiiarov, V.Sh., Borisov, E.V., and Polozov, I.A., Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment, Key Eng. Mater., 2015, vols. 651–653, pp. 665–670.

    Article  Google Scholar 

  12. Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J.P., and Van Humbeeck, J., Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Add. Manuf., 2015, vol. 5, pp. 77–84.

    Google Scholar 

  13. Frazier, W.E., Metal additive manufacturing: a review, J. Mater. Eng. Perform., 2014, vol. 23, no. 6, pp. 1917–1928.

    Article  Google Scholar 

  14. Yadroitsev, I., Bertrand, P., Antonenkova, G., Grigoriev, S., and Smurov, I., Use of track/layer morphology to develop functional parts by selective laser melting, J. Laser Appl., 2013, vol. 25, no. 5, p. 052003.

    Article  Google Scholar 

  15. Wu, M.W., Lai, P.H., and Chen, J.K., Anisotropy in the impact toughness of selective laser melted Ti–6Al–4V alloy, Mater. Sci. Eng. A, 2016, vol. 650, pp. 295–299.

    Article  Google Scholar 

  16. Chlebus, E., Kuznicka, B., Kurzynowski, T., and Dybala, B., Microstructure and mechanical behaviour of ti-6al-7nb alloy produced by selective laser melting, Mater. Character., 2011, vol. 62, no. 5, pp. 488–495.

    Article  Google Scholar 

  17. Vilaro, T., Colin, C., and Bartout, J.D., As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting, Metal. Mater. Trans. A, 2011, vol. 42, no. 10, pp. 3190–3199.

    Article  Google Scholar 

  18. Ahuja, B., Schaub, A., Karg, M., Lechner, M., Merklein, M., and Schmidt, M., Developing LBM process parameters for Ti–6Al–4V thin wall structures and determining the corresponding mechanical characteristics, Phys. Proc., 2014, vol. 56, pp. 90–98.

    Article  Google Scholar 

  19. Qiu, C., Adkins, N.J.E., and Attallah, M.M., Microstructure and tensile properties of selectively lasermelted and of HIPed laser-melted Ti–6Al–4V, Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–239.

    Article  Google Scholar 

  20. ASTM F2924—Standard Specification for Additive Manufacturing Titanium–6 Aluminum–4 Vanadium with Powder Bed Fusion.

  21. ASTM F3055 Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion.

  22. Popovich, A., Sufiiarov, V., Borisov, E., and Polozov, I., Microstructure and mechanical properties of Ti–6Al–4V manufactured by SLM, Key Eng. Mater., 2015, vols. 651–653, pp. 677–682.

    Article  Google Scholar 

  23. Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., and Knutsen, R., Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting, Add. Manuf., 2015, vol. 5, pp. 68–76.

    Google Scholar 

  24. Rafi, H.K., Starr, T.L., and Stucker, B.E., A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting, Int. J. Adv. Manuf. Technol., 2013, vol. 69, nos. 5–8, pp. 1299–1309.

    Article  Google Scholar 

  25. Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., and Schrage, J., Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl., 2014, vol. 26, no. 1, p. 012004.

    Article  Google Scholar 

  26. Sufiiarov, V.Sh., Borisov, E.V., and Polozov, I.A., Selective laser melting of the Inconel 718 nickel superalloy, Appl. Mech. Mater., 2015, vol. 698, pp. 333–338.

    Article  Google Scholar 

  27. Sufiiarov, V.Sh., Popovich, A.A., Borisov, E.V., and Polozov, I.A., Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting, Tsvetn. Met., 2016, no. 1, pp. 81–86.

    Article  Google Scholar 

  28. Collins, P.C., Welk, B., Searles, T., Tiley, J., Rußs, J.C., and Fraser, H.L., Development of methods for the quantification of microstructural features in a + ß-processed a/ß titanium alloys, Mater. Sci. Eng. A, 2009, vol. 508, no. 1, pp. 174–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Popovich.

Additional information

Original Russian Text © A.A. Popovich, V.Sh. Sufiiarov, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Grigoriev, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2016, No. 3, pp. 4–11.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovich, A.A., Sufiiarov, V.S., Borisov, E.V. et al. Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials. Russ. J. Non-ferrous Metals 58, 389–395 (2017). https://doi.org/10.3103/S1067821217040149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217040149

Keywords

Navigation