Skip to main content
Log in

Experimental Investigation on the EBM-Based Additively Manufactured Prismatic Nickel–Titanium SMA Components

  • MATERIALS AND COATINGS FABRICATED BY ADDITIVE TECHNOLOGIES
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) of the nickel–titanium (NiTi) shape memory alloys (SMA) have provided novel component solutions with a variety of design configurations in the industry. Electron beam melting (EBM) is a trending metal additive manufacturing process for industrial applications in the field of biomedical and aerospace engineering. In this study, experimental investigations were conducted to reveal the effect of processing conditions on the microstructure and hardness properties of EBM-fabricated nickel-titanium components. Furthermore, detailed microstructural characterizations were performed with a scanning electron microscope, EDS, and XRD for unveiling of the microscopic structure and phase analysis during the layer by layer solidification. The experimental results were systematically evaluated for the powder and the bulk prismatic components, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. ASTM Committee F42 on Additive Manufacturing Technologies.

  2. Lee, A.Y., An, J., and Chua, C.K., Two-way 4D printing: A review on the reversibility of 3D-printed shape memory materials, Engineering, 2017, vol. 3, no. 5, p. 663.

    Article  CAS  Google Scholar 

  3. Shishkovsky, I., Yadroitsev, I., and Smurov, I., Direct selective laser melting of nitinol powder, Phys. Procedia, 2012, vol. 39, p. 447.

    Article  CAS  Google Scholar 

  4. Jahadakbar, A., Moghaddam, N.S., Amerinatanzi, A., Dean, D., and Elahinia, M., Mechanical evaluation of the SLM fabricated, stiffness-matched, mandibular bone fixation plates, Proc. SPIE, 2018, vol. 10596, p. 1059610.

    Google Scholar 

  5. Shiva, S., Palani, I.A., Mishra, S.K., Paul, C.P., and Kukreja, L.M., Investigations on the influence of composition in the development of Ni–Ti shape memory alloy using laser based additive manufacturing, Opt. Laser Technol., 2015, vol. 69, p. 44.

    Article  CAS  Google Scholar 

  6. Altug-Peduk, G.S., Dilibal, S., Harrysson, O.L.A., Ozbek, S., and West, H., Characterization of N–Ti alloy powders for use in additive manufacturing, Russ. J. Non-Ferrous Met., 2018, vol. 59, p. 433.

    Article  Google Scholar 

  7. Murr, L.E., Metallurgy of additive manufacturing: Examples from electron beam melting, Addit. Manuf., 2015, vol. 5, p. 40.

    CAS  Google Scholar 

  8. Frigola, P., Harrysson, O.L.A., and Ramirez, D.A., Fabricating copper components with electron beam melting, Adv. Mater. Processes, 2014, vol. 152, p. 20.

    Google Scholar 

  9. Kumar, S., Marandi, L., Balla, V.K., Bysakh, S., Piorunek, D., Eggeler, G., Das, M., and Sen, I., Microstructure—Property correlations for additively manufactured NiTi based shape memory alloys, Materialia, 2019, vol. 8, p. 15.

    Article  CAS  Google Scholar 

  10. Farber, E., Zhu, J., Popovich, A., and Popovich, V., A review of NiTi shape memory alloy as a smart material produced by additive manufacturing, Mater. Today: Proc., 2020, vol. 30, p. 761. https://doi.org/10.1016/j.matpr.2020.01.563

    Article  CAS  Google Scholar 

  11. Oliveira, J.P., Cavaleiro, A.J., Schell, N., Stark, Andreas, Miranda, R.M., Ocana, J.L., and Braz Fernandes, F.M., Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing, Scr. Mater., 2018, vol. 152, p. 124.

    Article  Google Scholar 

  12. Parvizi, S., Hashemi, S.M., Asgarinia, F., Nematollahi, M., and Elahinia, M., Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: A review, Prog. Mater. Sci., 2020, vol. 117, p. 100739. https://doi.org/10.1016/j.pmatsci.2020.100739

    Article  CAS  Google Scholar 

  13. Wang, C., Tan, X.P., Du, Z., Chandra, S., Sun, Z., Lim, C.W.J., Tor, S.B., Lim, C.S., and Wong, C.H., Additive manufacturing of NiTi shape memory alloys using pre-mixed powders, J. Mater. Process. Technol., 2019, vol. 271, p. 153.

    Google Scholar 

  14. Yoder, S., Morgan, S., Kinzy, C., Barnes, E., Kirka, M., Paquit, V., Nandwana, P., Plotkowski, A., Dehoff, R.R., and Babu, S.S., Characterization of topology optimized Ti–6Al–4V components using electron beam powder bed fusion, Addit. Manuf., 2018, vol. 19, pp. 184–196.

    CAS  Google Scholar 

  15. Ataee, A., Li, Y., and Wen, C., Metal scaffolds processed by electron beam melting for biomedical applications, in Metallic Foam Bone, Processing, Modification and Characterization and Properties, Elsevier Science, 2017, p. 83.

    Google Scholar 

  16. Vock, S., Klöden, B., Kirchner, A., et al., Powders for powder bed fusion: a review, Prog. Addit. Manuf., 2019, vol. 4, p. 383.

    Article  Google Scholar 

  17. Espiritu, E.R.L., Kumar, A., Nommeots-Nomm, A., et al., Investigation of the rotating drum technique to characterise powder flow in controlled and low pressure environments, Powder Technol., 2020, vol. 366, p. 925.

    Article  CAS  Google Scholar 

  18. Chen, H., Chen, Y., Liu, Y., Wei, Q., Shi, Y., and Yan, W., Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing, Int. J. Mach. Tools Manuf., 2020, vol. 153, article no. 103553.

    Article  Google Scholar 

  19. Ashgriz, N., Handbook of Atomization and Sprays: Theory and Applications, Springer, 2011.

    Book  Google Scholar 

  20. Shabalovskaya, S., Anderegg, J., and Van Humbeeck, J., Recent observations of particulates in Nitinol, Mater. Sci. Eng., A, 2008, vol. 481, p. 431.

    Article  Google Scholar 

  21. Massalski, T.B., Okamoto, H., and Subramanian, P.R., Binary Alloy Phase Diagrams, Materials Park, OH: ASM Int., 1990, vol. 3, p. 2874.

    Google Scholar 

  22. Otsuka, K. and Wayman, C.M., Shape Memory Materials, Cambridge: Cambridge Univ. Press, 1988, p. 49.

    Google Scholar 

  23. Khamei, A. and Dehghani, K., Microstructural evolution during the hot deformation of Ti-55Ni (at. pct) intermetallic alloy, Metall. Mater. Trans. A, 2010, vol. 41, p. 2595.

    Article  Google Scholar 

  24. Roy, N., Samuel, A.M., and Samuel, F.H., Porosity formation in Al–9 wt % Si–3 wt % Cu alloy systems: Metallographic observations, Metall. Mater. Trans. A, 1996, vol. 27, p. 415.

    Article  Google Scholar 

  25. Thier, M., Hühner, M., Kobus, E., Drescher, D., and Bourauel, C., Microstructure of As-cast NiTi alloy, Mater. Charact., 1991, vol. 27, p. 133.

    Article  CAS  Google Scholar 

  26. Mohd Zaki, H.H., Solid state synthesis of NiTi, MSc Thesis, Univ. of Western Australia, 2011.

  27. Bormann, T., Muller, B., Schinhammer, M., Kessler, A., Thalmann, P., and Wild, M., Microstructure of selective laser melted nickel–titanium, Mater. Charact., 2014, vol. 94, p. 189.

    Article  CAS  Google Scholar 

  28. Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., and Babu, S.S., The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev., 2016, vol. 61, no. 5, p. 315.

    Article  Google Scholar 

  29. Prokoshkin, S.D., Korotitskiy, A.V., Brailovski, V., Turenne, S., Khmelevskaya, I.Yu., and Trubitsyna, I.B., On the lattice parameters of phases in binary Ti–Ni shape memory alloys, Acta Mater., 2004, vol. 52, no. 15, pp. 4479–4492.

    Article  CAS  Google Scholar 

  30. Prokoshkin, S.D., Korotitskiy, A.V., Brailovski, V., Inaekyan, K.E., and Dubinskiy, S.M., Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape-memory alloys, Phys. Met. Metallogr., 2011, vol. 112, no. 2, pp. 170–187.

    Article  Google Scholar 

  31. Adharapurapu, R.R., Jiang, F., and Vecchio, K.S., Aging effects on hardness and dynamic compressive behavior of Ti–55Ni (at %) alloy, Mater. Sci. Eng., A, 2010, vol. 527, p. 1665.

    Article  Google Scholar 

  32. Lucas, F.L.C., Guido, V., Kafer, K.A., Bernardi, H.H., and Otubo, J., ECAE processed NiTi shape memory alloy, Mater. Res., 2014, vol. 17, p. 186.

    Article  Google Scholar 

  33. Saedi, S., Turabi, A.S., Andani, M.T., Moghaddam, N.S., Elahinia, M., and Karaca, H.E., Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys, Mater. Sci. Eng., A, 2017, vol. 686, p. 8.

    Article  Google Scholar 

  34. Jiang, S.Y., Zhao, Y.N., Zhang, Y.G., Hu, L., and Liang, Y.L., Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, p. 3658.

    Article  CAS  Google Scholar 

  35. Zuback, J.S. and DebRoy, T., The hardness of additively manufactured alloys, Materials (Basel), 2018, vol. 11, p. 28.

    Article  Google Scholar 

  36. Dilibal, S., Hamilton, R.F., and Lanba, A., The effect of employed loading mode on the mechanical cyclic stabilization of NiTi shape memory alloys, Intermetallics, 2017, vol. 89, p. 6.

    Article  Google Scholar 

  37. Moghaddam, N.S., Saedi, S., Amerinatanzi, A., Hinojos, A., Ramazani, A., Kundin, J., Mills, M.J., Karaca, H., and Elahinia, M., Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment, Sci. Rep., 2019, vol. 9, p. 7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savas Dilibal.

Ethics declarations

The authors state that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altug-Peduk, G., Dilibal, S., Harrysson, O. et al. Experimental Investigation on the EBM-Based Additively Manufactured Prismatic Nickel–Titanium SMA Components. Russ. J. Non-ferrous Metals 62, 357–367 (2021). https://doi.org/10.3103/S1067821221030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821221030020

Keywords:

Navigation