Skip to main content
Log in

Radar investigations of cloud merger

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Presented are the results of radar investigations of cloud merger during their natural cycle of development and after the seeding. The observations were carried out in the southwest of the Kingdom of Saudi Arabia in 2008. It is revealed that the merging was observed under conditions of very unstable atmosphere, when the convective available potential energy exceeded 3000 J/kg. The cloud merger impacts significantly their development. The most considerable changes due to the cloud merging were observed for the cloud mass and precipitation flow increased as a result of this process by two or three times. It is discovered that the impact of the merger of clouds on their characteristics exceeds significantly the effect of seeding carried out for the feeder clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Abshaev, “Structure and Dynamics of Development of Hail and Thunderstorm Processes in the North Caucasus,” Trudy VGI (Trans. High-Mountain Geophys. Inst.), No. 53 (1984).

  2. V. I. Bekryaev, Yu. F. Ponomarev, A. A. Sin’kevich, and E. V. Chubarina, “Results of Studying the Convective Cloud Crystallization Process after the Seeding,” in Problems of Cloud Physics (1987) [in Russian].

  3. V. P. Belyaev, V. V. Petrov, K. Peres, et al., “Results of Aircraft Investigations of Seeded and Control Clouds in Experiments on the Artificial Precipitation Control in Cuba,” Trudy TsAO (Trans. Centr. Aerolog. Observatory), No. 177 (1992).

  4. G. P. Beryulev, V. P. Belyaev, B. G. Danelyan, et al., “Evaluation of Modification Efficiency and Additional Precipitation Falling from Convective Clouds,” Meteorol. Gidrol., No. 4 (1995) [Russ. Meteorol. Hydrol., No. 4 (1995)].

  5. Yu. A. Dovgalyuk, A. D. Egorov, E. N. Stankova, et al., “Study of the Process of Transformation of Cumulus Congestus Cloud into Cumulonimbus Cloud after the Seeding,” in Active Influencing on Hydrometeorological Processes (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  6. T. W. Krauss, V. Shaw, A. A. Sin’kevich, and V. S. Makitov, “Cloud Modification in India: Physical and Statistical Estimation of the Results,” Meteorol. Gidrol., No. 7 (2006) [Russ. Meteorol. Hydrol., No. 7 (2006)].

  7. A. A. Sin’kevich, Convective Clouds of Northwestern Russia (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  8. A. A. Sin’kevich and T. W. Krauss, “Cloud Modification in Saudi Arabia: Statistical Estimation of the Results,” Meteorol. Gidrol., No. 6 (2010) [Russ. Meteorol. Hydrol., No. 6, 35 (2010)].

  9. A. A. Sin’kevich, T. W. Krauss, V. D. Stepanenko, et al., “Study of Dynamics of the Cumulonimbus Anvil of Large Vertical Extent,” Meteorol. Gidrol., No. 12 (2009) [Russ. Meteorol. Hydrol., No. 12, 34 (2009)].

  10. H. R. Byers and R. R. Braham, Jr., The Thunderstorm Project (U.S. Government Printing Office, 1949).

  11. S. A. Changnon, “Effects of Urban Areas and Echo Merging on Radar Echo Behavior,” J. Appl. Meteorol., 15 (1976).

  12. S. A. Changnon, K. R. Gabriel, N. E. Westcott, and R. R. Czys, “Exploratory Analysis of Seeding Effects on Rainfall: Illinois 1989,” J. Appl. Meteorol., 34 (1995).

  13. C.-H. Chen and H. D. Orville, “Effects of Mesoscale Convergence on Cloud Convection,” J. Appl. Meteorol., 18 (1980).

  14. H.-N. S. Chin and R. B. Wilhelmson, “Evolution and Structure of Tropical Squall Line Elements within a Moderate CAPE and Strong Low-level Jet Environment,” J. Atmos. Sci., 55 (1998).

  15. H. J. Cooper, M. Garstang, and J. Simpson, “The Diurnal Interaction between Convection and Peninsular-scale Forcing over South Florida,” Mon. Wea. Rev., 110 (1982).

  16. J. B. Cunning and M. DeMaria, “An Investigation of Development of Cumulonimbus Systems over South Florida. Part I: Boundary Layer Interactions,” Mon. Wea. Rev., 114 (1986).

  17. J. B. Cunning, R. H. Holle, P. T. Gannon, and A. I. Watson, “Convective Evolution and Merger in the FACE Experimental Area: Mesoscale Convection and Boundary Layer Interactions,” J. Appl. Meteorol., 21 (1982).

  18. R. R. Czys, S. A. Changnon, N. E. Westcott, et al., “Responses of Warm-based, Midwest Cumulus Congestus to Dynamic Seeding Trials,” J. Appl. Meteorol., 34 (1995).

  19. M. Dixon and G. Wiener, “TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-A Radar-based Methodology,” J. Atmos. Oceanic Technol., No. 6, 10 (1993).

  20. R. L. Holle and M. W. Maier, “Tornado Formation from Downdraft Interaction in the FACE Mesonetwork,” Mon. Wea. Rev., 108 (1980).

  21. Y. L. Kogan and A. Shapiro, “The Simulation of a Convective Cloud in a 3D Model with Explicit Microphysics. Part II: Dynamical and Microphysical Aspects of Cloud Merger,” J. Atmos. Sci., 53 (1996).

  22. T. W. Krauss and J. R. Santos, “Exploratory Analysis of the Effect of Hail Suppression Operations on Precipitation in Alberta,” Atmos. Res., 71 (2004).

  23. T. W. Krauss, A. A. Sinkevich, and A. S. Ghulam, “Precipitation Characteristics of Natural and Seeded Cumulus Clouds in the Asir Region of Saudi Arabia,” J. Wea. Mod., 42 (2010).

  24. P. A. Kucera, D. Axisa, R. P. Burger, et al., “Features of the Weather Modification Assessment Project in the Southwest Region of Saudi Arabia,” J. Wea. Mod., 42 (2010).

  25. B. D. Lee, B. F. Jewett, and R. B. Wilhelmson, “The 19 April 1996 Illinois Tornado Outbreak. Part I: Cell Evolution and Supercell Isolation,” Wea. Forecasting, 21 (2006).

  26. G. Levy and W. R. Cotton, “A Numerical Investigation of Mechanisms Linking Glaciation of the Ice-Phase to the Boundary Layer,” J. Climate Appl. Meteorol., 23 (1984).

  27. R. E. Lopez, “Internal Structure and Development Processes of C-Scale Aggregates of Cumulus Clouds,” Mon. Wea. Rev., 106 (1978).

  28. J. S. Malkus, “Some Results of a Trade-Cumulus Cloud Investigation,” J. Meteorol., 11 (1954).

  29. J. S. Malkus and H. Riehl, Cloud Structure and Distributions over the Tropical Pacific Ocean (Univ. California Press, Berkeley and Los Angeles, 1964).

    Google Scholar 

  30. Y. Ogura, Y.-L. Chen, J. Russell, and S.-T. Soong, “On the Formation of Organized Convective Systems Observed over the GATE A/B Array,” Mon. Wea. Rev., 107 (1979).

  31. H. D. Orville, Y.-H. Kuo, R. D. Farley, and C. S. Hwang, “Numerical Simulation of Cloud Interactions,” J. Rech. Atmos., 14 (1980).

  32. D. Pozo, I. Borrajero, J. C. Marin, and G. B. Raga, “A Numerical Study of Cell Merger over Cuba. Part II: Sensitivity to Environmental Conditions,” Ann. Geophys., 24 (2006).

  33. D. Rosenfeld and W. L. Woodley, “Effects of Cloud Seeding in West Texas,” J. Appl. Meteorol., 28 (1989).

  34. D. Rosenfeld and W. L. Woodley, “Effects of Cloud Seeding in West Texas: Additional Results and New Insights,” J. Appl. Meteorol., 32 (1993).

  35. J. Simpson, “Downdrafts as Linkages in Dynamic Cumulus Seeding Effects,” J. Appl. Meteorol., 19 (1980).

  36. J. Simpson and W. L. Woodley, “Seeding Cumulus in Florida: New 1970 Results,” Science, 172 (1971).

  37. J. Simpson, N. E. Westcott, R. J. Clerman, and R. A. Pielke, “On Cumulus Mergers,” Arch. Meteorol. Geophys. Bioklim., 29A (1980).

  38. W.-K. Tao and J. Simpson, “A Further Study of Cumulus Interactions and Mergers: Three-Dimensional Simulations with Trajectory Analyses,” J. Atmos. Sci., 46 (1989).

  39. W.-K. Tao and J. Simpson, “Cloud Interactions and Merging: Numerical Simulations,” J. Atmos. Sci., 41 (1984).

  40. O. Turpeinen, “Cloud Interactions and Merging on Day 261 of GATE,” Mon. Wea. Rev., 110 (1982).

  41. G. Vali, Aircraft Studies in the Asir (Univ. Wyoming, Dept. of Atmos. Sci., Report No. AS163, 1991).

  42. N. E. Westcott, “A Historical Perspective on Cloud Mergers,” Bull. Amer. Meteorol. Soc., 65 (1984).

  43. N. E. Westcott, “Merging of Convective Clouds: Cloud Initiation, Bridging, and Subsequent Growth,” Mon. Wea. Rev., 122 (1994).

  44. N. E. Westcott and P. C. Kennedy, “Cell Development and Merger in an Illinois Thunderstorm Observed by Doppler Radar,” J. Atmos. Sci., 46 (1989).

  45. V. G. Wiggert, J. Lockett, and S. S. Ostlund, “Rainshower Growth Histories and Variations with Wind Speed, Echo Motion, Location and Merger Status,” Mon. Wea. Rev., 109 (1981).

  46. W. L. Woodley, J. Jill, A. Barnston, et al., “Rainfall Results of the Florida Area Cumulus Experiments, 1970–1976,” J. Appl. Meteorol., 21 (1982).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.W. Krauss, A.A. Sin’kevich, A.S. Ghulam, 2012, published in Meteorologiya i Gidrologiya, 2012, No. 9, pp. 42–57.

About this article

Cite this article

Krauss, T.W., Sin’kevich, A.A. & Ghulam, A.S. Radar investigations of cloud merger. Russ. Meteorol. Hydrol. 37, 604–614 (2012). https://doi.org/10.3103/S106837391209004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837391209004X

Keywords

Navigation