Skip to main content
Log in

Effect of visible light on biological objects: Physiological and pathophysiological aspects

  • Light Effect on Biological Objects
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Visible light is a necessary condition for the existence of life on the Earth. The food and oxygen consumed by humans, directly or mediately, are products of photosynthesis: conversion of light energy into the energy of chemical bonding in organic matter. Visible light not only provides photosynthesis in plants; it is also involved in the regulation of many reactions (from molecular to behavioral) in the animal world. This review is devoted to the questions concerning the role of light in the life of biological objects and the physical mechanisms of interaction of visible light with matter. The effect of light on the molecular and physiological reactions of a human and its microflora is analyzed. The existing methods and the application potential of light effects in diagnostics and therapy are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Walter, Physiological Plant Ecology (Ecophysiology and Stress Physiology of Functional Groups) (Springer, Berlin, 2003).

    Google Scholar 

  2. M.C. Weiss, F.L. Sousa, N. Mrnjavac, S. Neukirchen, M. Roettger, S. Nelson-Sathi, and W.F. Martin, “The Physiology and Habitat of the Last Universal Common Ancestor,” Nature Microbiol. 1, 16116 (2016).

    Article  Google Scholar 

  3. S.B. Powles, “Photoinhibition of Photosynthesis Induced by Visible Light,” Ann. Rev. Plant Physiol. 35, 15 (1984).

    Article  Google Scholar 

  4. G. Jekely, J. Colombelli, H. Hausen, K. Guy, E. Stelzer, F. Nedelec, and D. Arendt, “Mechanism of Phototaxis in Marine Zooplankton,” Nature. 456, 395 (2008).

    Article  ADS  Google Scholar 

  5. J. Reinert, “Phototropism and Phototaxis,” Ann. Rev. Plant Physiol. 10, 441 (1959).

    Article  Google Scholar 

  6. W.E. Bradshaw and C.M. Holzapfel, “Evolution of Animal Photoperiodism,” Ann. Rev. Ecol. Evol. Syst. 38, 1 (2007).

    Article  Google Scholar 

  7. C.B. Saper, T.E. Scammell, and J. Lu, “Hypothalamic Regulation of Sleep and Circadian Rhythms,” Nature. 437, 1257 (2005).

    Article  ADS  Google Scholar 

  8. A.J. Millar, “The Intracellular Dynamics of Circadian ClocksReach for the Light of Ecology and Evolution,” Annu. Rev. Plant Biol. 67, 595 (2016).

    Article  Google Scholar 

  9. T. Wilson and J.W. Hastings, “Bioluminescence,” Ann. Rev. Cell Develop. Biol. 14, 197 (1998).

    Article  Google Scholar 

  10. M. Bischof, Biophotons—The Light in Our Cells (Zweitausendeins, Frankfurt, 1995).

    Google Scholar 

  11. A. Pillouer-Prost and H. Cartier, “Photodynamic Photorejuvenation: A Review,” Dermatol. Surg. 42, 21 (2016).

    Article  Google Scholar 

  12. E.V. Barmina, E. Stratakis, K. Fotakis, and G.A. Shafeev, “Generation of Nanostructures on Metals by Laser Ablation in Liquids: New Results,” Quantum Electron. 40, 1012 (2010).

    Article  ADS  Google Scholar 

  13. S.N. Andreev, S.V. Orlov, and A.A. Samokhin, “Simulation of Pulsed-Laser-Induced Explosive Boiling,” Phys. Wave Phenom. 15(2), 67 (2007) [DOI: 10.3103/S1541308X0702001X].

    Article  ADS  Google Scholar 

  14. S.N. Andreev, V.I. Vovchenko, and A.A. Samokhin, “Study of Explosive Boiling of Transparent Liquid on Metal Substrate Exposed to Nanosecond Laser Pulses,” Phys. Wave Phenom. 15(3), 182 (2007) [DOI: 10.3103/S1541308X07030041].

    Article  ADS  Google Scholar 

  15. S.N. Andreev, K.N. Firsov, S. Yu. Kazantsev, I.G. Kononov, and A.A. Samokhin, “Explosive Boiling of Water Induced by the Pulsed HF-Laser Radiation,” Laser Phys. 17, 834 (2007).

    Article  ADS  Google Scholar 

  16. S.N. Andreev, S. Yu. Kazantsev, I.G. Kononov, P.P. Pashinin, and K.N. Firsov, “Generation of an Electric Signal in the Interaction of HF-Laser Radiation with Bottom Surface of a Water Column,” Quantum Electron. 40, 716 (2010).

    Article  ADS  Google Scholar 

  17. E.V. Barmina, A.V. Simakin, and G.A. Shafeev, “Hydrogen Emission under Laser Exposure of Colloidal Solutions of Nanoparticles,” Chem. Phys. Lett. 655, 35 (2016).

    Article  ADS  Google Scholar 

  18. N.F. Bunkin, B.W. Ninham, V.A. Babenko, N.V. Suyazov, and A.A. Sychev, “Role of Dissolved Gas in Optical Breakdown of Water: Differences Between Effects Due to Helium and Other Gases,” J. Phys. Chem. B. 114, 7743 (2010).

    Article  Google Scholar 

  19. M.V. Kiseleva and V.A. Kulganov, Art Therapy in Psychological Counseling (Rech, St.Petersburg, 2012).

    Google Scholar 

  20. V.V. Kirianova, T.N. Korolkova, and A.S. Kirillova, “The Possibility of Application of Led Radiation at a Wavelength of 650nm (Red Light) in Correction of Involutional Changes in the Skin of the Person,” Bull. Avicenna. 4, 141 (2012).

    Google Scholar 

  21. E.I. Ostrovskiy, V.I. Karandashov, S.N. Shatokhina, N.P. Sanina, O. Yu. Ryzhkova, E.M. Katlomina, and N.R. Paleev, “Effects of Photohemotherapy on the Clinical Course of Bronchial Asthma,” Almanac Clin. Med. 35, 60 (2014).

    Google Scholar 

  22. I.A. Belenova and G.B. Kobzeva, “The Possibility of Using Led Technology for the Treatment and Prevention of Chronic Periodontitis in Dentistry,” J. New Med. Tech. 1, 2 (2014).

    Google Scholar 

  23. E.G. Borisova, “Nonpharmaceutical Treatment of Pain Syndrome Burning Mouth (SIPR) Using Phototherapy,” Inst. Dentistry. 54, 104 (2012).

    Google Scholar 

  24. V.A. Ermolaev, “The Clinical Picture of Skin-Muscular Wounds When Exposed to Led Radiation in the Red Spectral Region,” Act. Prob. Med. Sci. 1, 149 (2015).

    Google Scholar 

  25. I.I. Diamant, “New Technologies in Rehabilitation Treatment after Surgery for Fallopian Tubes,” Siberian Sci. Med. J. 23, 60 (2003).

    Google Scholar 

  26. Y.I. Borodin, “The Effectiveness of the High Frequency and Laser Therapy in Treatment of Venous Blood Congestion in Pelvic Organs,” Kazan Med. J. 89(5), 613 (2008).

    Google Scholar 

  27. Y.N. Chernykh, “Dynamics Bronchodilatation Indicators and Indicators of Tolerance to Physical Load in Patients with Chronic Obstructive Pulmonary Disease with Concomitant Coronary Artery Disease,” J. NewMed. Tech. 1, 1 (2013).

    Article  Google Scholar 

  28. T.M. Bruk, “Assessment of Individual Differences in Adaptive Responses to Hypoxia-Hypercapnia in Conditions of Low-Intensity Laser Radiation,” Laser Med. 14, 26 (2010).

    Google Scholar 

  29. V. Monich, O. Drugova, V. Lazukin, and A. Bavrina, “Low-Power Light and Isolated Rat Hearts after Ischemia ofMyocardium,” J. Photochem. Photobiol. B: Biol. 105, 21 (2011).

    Article  Google Scholar 

  30. T. Nakayama, Y. Noda, Y. Goto, and T. Mori, “Effects of Visible Light and Other Environmental Factors on the Production of Oxygen Radicals by Hamster Embryos,” Theriogenology. 41, 499 (1994).

    Article  Google Scholar 

  31. A.S. Chernov, D.A. Reshetnekov, L.I. Fakhranurova, A.A. Manohin, G.A. Davydova, I.I. Selezneva, and R.N. Khramov, “Stimulation of the Development of EarlyMouse Embryos under the Influence of Artificial Sunlight with Extra Fluorescent Orange-Red Component,” Medline.ru. 14, 295 (2013).

    Google Scholar 

  32. C.S. Enwemeka, D. Williams, S. Hollosi, D. Yens, and S.K. Enwemeka, “Visible 405nm SLD Light Photo-Destroys Methicillin-Resistant Staphylococcus Aureus (MRSA) in Vitro,” Lasers Surg. Med. 40(10), 734 (2008).

    Article  Google Scholar 

  33. Y. Kotoku, J. Kato, G. Akashi, Y. Hirai, and K. Ishihra, “Bactericidal Effect of a 405-nm Diode Laser on Porphyromonas gingivalis,” Laser Phys. Lett. 6(5), 388 (2009).

    Article  ADS  Google Scholar 

  34. H. Ashkenazi, Z. Malik, Y. Harth, and Y. Nitzan, “Eradication of Propionibacterium Acnes by Its Endogenic Porphyrins after Illumination with High Intensity Blue Light,” FEMS Immunol. Med. Microbial. 35(1), 17 (2003).

    Article  Google Scholar 

  35. E.S. Tuchina and V.V. Tuchin, “Low-Intensity LED (625 and 405 nm) and Laser (805 nm) Killing Propionibacterium acnes and Staphylococcus epidermidis,” Proc. SPIE. 7165, 716501 (2009).

    Article  Google Scholar 

  36. R. Sailer, W.S.L. Strauss, K. Konig, A. Ruck, and R. Steiner, “Correlation Between Porphyrin Biosynthesis and Photodynamic Inactivation of Pseudomonas aeruginosa after Incubation with 5-Aminolevulinic Acid,” J. Photochem. Photobiol. B. 36, 236 (1997).

    Article  Google Scholar 

  37. V.I. Karandashov, “Features of the Optical Radiation in the Blue Range of the Spectrum and Perspectives of Its Use in the Practice of Medicine,” Laser Med. 2, 39 (2013).

    Google Scholar 

  38. M.H. Gold, J. Rao, M.P. Goldman, T.M. Bridges, V.L. Bradshaw, M.M. Boring, and A.N. Guider, “A Multicenter Clinical Evaluation of the Treatment of Mild to Moderate Inflammatory Acne Vulgaris of the Face with Visible Blue Light in Comparison to Topical 1% Clindamycin Antibiotic Solution,” J. Drugs. Dermatol. 4, 64 (2005).

    Google Scholar 

  39. V.N. Dirin, S.A. Naumov, V.V. Udut, S.M. Vovk, and V.E. Goldberg, “Method of Correcting the Functional State of Organs of Immune System and Biological Electrostimulator of Viscera for Its Implementation,” RF Patent for the Invention, 2145892 (2000).

    Google Scholar 

  40. S. Naumov, V. Dyrin, S. Vovk, E. Petrova, V. Udut, and E. Borodulina, “Autonomous Device for Photostimuiation of the Gastrointestinal Tract Immunity,” Proc. SPIE. 3907, 433 (2000).

    Article  ADS  Google Scholar 

  41. I.G. Chukhrai, E.I. Marchenko, and I.L. Bobkova, “The Study of the Effectiveness of Low-Intensity Infrared and Red Laser Radiation on the Growth of Culture Lactic Acid Bacteria,” Sci. Ach. Biol. Chem. Phys. 4, 12 (2012).

    Google Scholar 

  42. V.A. Monich, S.L. Malinovskaya, T.V. Makhrova, and D.S. Malinovsky, “Peculiarities of Action of Different Waveband Low-Intensity Electromagnetic Radiation on Microorganisms,” Vestnik of Lobachevsky University of Nizhni Novgorod. 2(2), 435 (2010) [in Russian].

    Google Scholar 

  43. V.B. Loschenov, V.I. Konov, and A.M. Prokhorov, “Photodynamic Therapy and Fluorescence Diagnostics,” Laser Phys. 10, 1188 (2000).

    Google Scholar 

  44. E.V. Filonenko and L.G. Serova, “Photodynamic Therapy in Clinical Practice,” Biomed. Photon. 5, 26 (2016).

    Google Scholar 

  45. V.N. Galkin, Y.S. Romanko, M.A. Kaplan, A.V. Molochkov, V.A. Molochkov, Z.S. Kuntcevich, T.E. Sukhova, and S.D. Dibirova, “The Use of Photodynamic Therapy in the Treatment of Keratoacanthomas,” Biomed. Photon. 5, 21 (2016).

    Google Scholar 

  46. I. Isenberg, “Free Radicals in Tissue,” Physiol. Rev. 44, 487 (1964).

    Google Scholar 

  47. Z. Zhou, J. Song, L. Nie, and X. Chen, “Reactive Oxygen Species Generating Systems Meeting Challenges of Photodynamic Cancer Therapy,” Chem. Soc. Rev. 45, 6597 (2016).

    Article  Google Scholar 

  48. S.V. Gudkov, V.I. Bruskov, M.E. Astashev, A.V. Chernikov, L.S. Yaguzhinsky, and S.D. Zakharov, “Oxygen-Dependent Auto-Oscillations of Water Luminescence Triggered by the 1264nm Radiation,” J. Phys. Chem. B. 115, 7693 (2011).

    Article  Google Scholar 

  49. S.V. Gudkov, O.E. Karp, S.A. Garmash, V.E. Ivanov, A.V. Chernikov, A.A. Manokhin, M.E. Astashev, L.S. Yaguzhinsky, and V.I. Bruskov, “Generation of Reactive Oxygen Species inWater under Exposure of Visible or Infrared Irradiation at Absorption Bands of Molecular Oxygen,” Biophysics. 57(1), 1 (2012).

    Article  Google Scholar 

  50. S.M. Banerjee, A.J. MacRobert, C.A. Mosse, B. Periera, S.G. Bown, and M.R. Keshtgar, “Photodynamic Therapy: Inception to Application in Breast Cancer,” Breast. 31, 105 (2016).

    Article  Google Scholar 

  51. T.A. Shell and D.S. Lawrence, “Vitamin B12: A Tunable, Long Wavelength, Light-Responsive Platform for Launching Therapeutic Agents,” Acc. Chem. Res. 48, 2866 (2015).

    Article  Google Scholar 

  52. T.G. McKenzie, Q. Fu, E.H.H. Wong, D.E. Dunstan, and G.G. Qiao, “Visible Light Mediated Controlled Radical Polymerization in the Absence of Exogenous Radical Sources or Catalysts,” Macromolecules. 48, 3864 (2015).

    Article  Google Scholar 

  53. N.I. Fry and P.K. Mascharak, “Photoactive Ruthenium Nitrosyls As NO Donors: How to Sensitize Them Toward Visible Light,” Acc. Chem. Res. 44, 289 (2011).

    Article  Google Scholar 

  54. A. Leonidova, V. Pierroz, R. Rubbiani, Y. Lan, A.G. Schmitz, and A. Kaech, “Photo-Induced Uncaging of a Specific Re(I) Organometallic Complex in Living Cells,” Chem. Sci. 5, 4044 (2014).

    Article  Google Scholar 

  55. M.A. Sgambellone, A. David, R.N. Garner, K. Dunbar, and C. Turro, “Cellular Toxicity Induced by the Photorelease of a Caged Bioactive Molecule: Design of a Potential Dual-Action Ru(II) Complex,” J. Am. Chem. Soc. 135, 11274 (2013).

    Article  Google Scholar 

  56. B.S. Howerton, D.K. Heidary, and E.C. Glazer, “Strained Ruthenium Complexes are Potent Light-Activated Anticancer Agents,” J. Am. Chem. Soc. 134, 8324 (2012).

    Article  Google Scholar 

  57. J.C. Griepenburg, N. Sood, K.B. Vargo, D. Williams, J. Rawson, and M.J. Therien, “Caging Metal Ions with Visible Light-Responsive Nanopolymersomes,” Langmuir. 31, 799 (2015).

    Article  Google Scholar 

  58. L. Jia, T. Zhou, J. Xu, Z. Xu, M. Zhang, and Y. Wang, “Visible Light-Induced Lanthanide Polymer Nanocomposites Based on Clays for Bioimaging Applications,” J. Mater. Sci. 51, 1324 (2015).

    Article  ADS  Google Scholar 

  59. J. Xu, X. Zhou, Z. Gao, Y.Y. Song, and P. Schmuki, “Visible-Light-Triggered Drug Release from TiO2 Nanotube Arrays: A Controllable Antibacterial Platform,” Ang. Chem. Int. Ed. 128, 603 (2016).

    Article  Google Scholar 

  60. Y.L. Luo, Y.S. Shiao, and Y.F. Huang, “Release of Photoactivatable Drugs from Plasmonic Nanoparticles for Targeted Cancer Therapy,” ACS Nano. 5, 7796 (2011).

    Article  Google Scholar 

  61. M.L. Belov, O.A. Bullo, and V.A. Gorodnichev, “Laser Fluorescence Detection Method of Plant Stress Caused by Insufficient Nutrient Levels or the Presence of Contaminants in Soil,” Science and Education: Scientific Publication of BMSTU. No. 12, 29 (2012) [in Russian].

    Google Scholar 

  62. A.P. Glinushkin, S.A. Dushkin, and A.A. Khairulinova, “Phytosanitary Condition of Plants As an Indicator of Ecological Quality,” Izvestiya Orenburg State Agrarian University. 27(3), 52 (2010) [in Russian].

    Google Scholar 

  63. N.B. Surov, P.S. Bikteev, V.S. Ragulin, A.P. Glinsky, and G.K. Duskaev, “Effect of Consumption of the Drug on the Disease Development and the Realization of the Productive Potential of Pumpkin,” Biotics. 3, 15 (2015).

    Google Scholar 

  64. E. Bornstein, W. Hermans, S. Gridley, and J. Manni, “Near-Infrared Photoinactivation of Bacteria and Fungi at Physiologic Temperatures,” Photochem. Photobiol. 85, 1364 (2009).

    Article  Google Scholar 

  65. L.G. Seraya, V.B. Zvyagintsev, A.P. Glinushkin, and Yu.N. Baranchikov, “Secondary Area of the Far East Invaders—“Communication without Borders”,” Rus. Agricult. Sci. Rev. 6, 52 (2015) [in Russian].

    Google Scholar 

  66. A.P. Glinushkin, O.O. Beloshapkina, A.A. Solovykh, G.V. Sudarenkov, and J. Molnár, “Bacterial Diseases of Wheat in the Southern Ural: Manifestations, Biological Characteristics and Monitoring Features,” Acta Phytopathol. Entomol. Hung. 51(1), 57 (2016).

    Article  Google Scholar 

  67. A.P. Glinushkin, O.O. Beloshapkina, A.A. Solovykh, V.S. Lukyantsev, A.A. Batmanova, G.V. Sudarenkov, and J. Molnár, “Bacterial Diseases of Wheat Caused by Xanthomonas sp. in the Southern Ural: Identification Issues,” Acta Phytopathol. Entomol. Hung. 51(2), 171 (2016).

    Article  Google Scholar 

  68. A.O. Terent’ev, I.A. Yaremenko, A.P. Glinushkin, and G.I. Nikishin, “Synthesis of Peroxides from β, δ-Triketones under Heterogeneous Conditions,” Russ. J. Organic Chem. 51(12), 1681 (2015).

    Article  Google Scholar 

  69. Yu. N. Zakharov, E.V. Mitroshina, M.V. Vedunova, S.A. Korotchenko, Ya.I. Kalintseva, I.V. Mukhina, and A.V. Potanina, “Fluorescence Analysis of the Metabolic Activity Patterns of a Neuronal-Glial Network,” J. Opt. Tech. 79, 348 (2012).

    Article  Google Scholar 

  70. A.M. Semenov, A.P. Glinushkin, and M.S. Sokolov, “Organic Farming and the Health of Soil Ecosystems,” Sci. Tech. APC. 30, 5 (2016).

    Google Scholar 

  71. S.V. Gudkov, N.Y. Shilyagina, V.A. Vodeneev, and A.V. Zvyagin, “Targeted Radionuclide Therapy of Human Tumors,” Int. J. Mol. Sci. 17, 33 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gudkov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudkov, S.V., Andreev, S.N., Barmina, E.V. et al. Effect of visible light on biological objects: Physiological and pathophysiological aspects. Phys. Wave Phen. 25, 207–213 (2017). https://doi.org/10.3103/S1541308X17030074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17030074

Navigation