Skip to main content
Log in

Diffractive elements for imaging optical systems

  • Diffractive Optics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The problems and prospects of using diffractive elements with a sawtooth relief-phase microstructure in imaging optical systems are analyzed. Particular attention is paid to minimizing the adverse side effect of diffraction orders on the quality of the image formed by an optical system with a diffractive element due to the change-over from single-layer microstructures to structures containing several layers and reliefs. Requirements are formulated for the design parameters of the microstructure and operating conditions of diffractive elements in optical systems that ensure no visible halo caused by adverse diffraction orders. It is shown by a number of examples that the use of a diffractive element in a plastic-lens imaging optical system corrects chromatic aberrations and provides high resolution in the generated image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Shimanskii, A. G. Poleshchuk, V. P. Korol’kov, and V. V. Cherkashin, “Alignment of the Writing Beam with the Diffractive Structure Rotation Axis in Synthesis of Diffractive Optical Elements in a Polar Coordinate System,” Avtometriya 53 (2), 30–38 (2017) [Optoelectron., Instrum. Data Process. 53 (2), 123–130 (2017)].

    Google Scholar 

  2. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of Achromatic and Apochromatic Plastic Micro-Objectives,” Appl. Opt. 49 (23), 4379–4384 (2010).

    Article  ADS  Google Scholar 

  3. Edmund Optics: Plastic Hybrid Aspheric Lenses. https://www.edmundoptics.eu/optics/optical-lenses/achromatic-lenses/plastic-hybrid-aspheric-lenses.

  4. S. T. Bobrov, G. I. Greisukh, and Yu. G. Turkevich, Optics of Diffractive Elements and Systems (Mashinostroenie, Leningrad, 1986) [in Russian].

    Google Scholar 

  5. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical Performance of Holographic Kinoforms,” Appl. Opt. 28 (5), 976–983 (1989).

    Article  ADS  Google Scholar 

  6. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, et al., “Visual Assessment of the Influence of Adverse Diffraction Orders on the Quality of Image Formed by the Refractive-Diffractive Optical System,” Komp. Opt. 38 (3), 418–424 (2014).

    Article  Google Scholar 

  7. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, et al., “Single-Layer Kinoforms for Cameras and Video Cameras of Mobile Communication Devices,” Komp. Opt. 41 (2), 218–226 (2017).

    Google Scholar 

  8. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Effect of Side Diffraction Orders on Imaging Quality Produced by a Refractive/Diffractive Objective in a Digital Camera,” Opt. Zh. 83 (3), 27–31 (2016).

    Google Scholar 

  9. V. A. Lukin, K. S. Mustafin, and R. A. Rafikov, “Hologram Optical Element,” RF Patent 1271240, Publ. 05.10.1996.

    Google Scholar 

  10. A. V. Lukin, “Holographic Optical Elements,” Opt. Zh. 74 (1), 80–87 (2007).

    ADS  Google Scholar 

  11. Y. Arieli, S. Noach, S. Ozeri, and N. Eisenberg, “Design of Diffractive Optical Elements for Multiple Wavelengths,” Appl. Opt. 37 (26), 6174–6177 (1998).

    Article  ADS  Google Scholar 

  12. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Choosing Materials for Achromatization of Relief-Phase Diffraction Structures,” Komp. Opt. 32 (1), 43–46 (2008).

    Google Scholar 

  13. G. I. Greisukh, E. A. Bezus, D. A. Bykov, et al., “Suppression of the Spectral Selectivity of Two-Layer Phase- Relief Diffraction Structures,” Opt. Spektrosk. 106 (4), 694–699 (2009).

    Article  Google Scholar 

  14. V. P. Koronkevich and I. G. Palchikova, “Modern Zone Plates,” Avtometriya, No. 1, 85–100 (1992).

    Google Scholar 

  15. G. I. Greisukh, E. G. Ezhov, A. V. Kalashnikov, et al., “The Efficiency of Relief-Phase Diffractive Elements at a Small Number of Fresnel Zones,” Opt. Spektrosk. 113 (4), 468–473 (2012).

    Article  Google Scholar 

  16. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Relief-Phase Diffractive Optical Elements on Revolution Surfaces Having High Diffraction Efficiency,” Komp. Opt. 37 (1), 45–50 (2013).

    Article  Google Scholar 

  17. T. Nakai, “Diffractive Optical Element and Optical System Having the Same,” US Patent 6262846 B1, Publ. 17.07.2001.

    Google Scholar 

  18. Y. H. Zhao, C. J. Fan, C. F. Ying, and S. H. Liu, “The Investigation of Triple-Layer Diffraction Optical Element with Wide Field of View and High Diffraction Efficiency,” Opt. Commun. 295, 104–107 (2013).

    Article  ADS  Google Scholar 

  19. Y. H. Zhao, C. J. Fan, C. F. Ying, and H. Wang, “The Investigation of Three Layers Diffraction Optical Element with Wide Field of View and High Diffraction Efficiency,” Optik. 124 (20), 4142–4144 (2013).

    Article  ADS  Google Scholar 

  20. T. Nakai, “Diffractive Optical Element and Optical System Having the Same,” US Patent 2001/0038503, Publ. 08.11.2001.

    Google Scholar 

  21. B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design Concepts for Broadband High-Efficiency DOEs,” J. Europ. Opt. Soc. Rapid Publ. 3, 08015 (2008).

    Article  Google Scholar 

  22. T. Gühne and J. Barth, “Strategy for Design of ASchromatic Diffractive Optical Elements with Minimized Etch Depths,” Appl. Opt. 52 (34), 8419–8423 (2013).

    Article  ADS  Google Scholar 

  23. C. Xue and Q. Cui, “Design of Multilayer Diffractive Optical Elements with Polychromatic Integral Diffraction Efficiency,” Opt. Lett. 35 (7), 986–988 (2010).

    Article  ADS  Google Scholar 

  24. G. I. Greisukh, V. A. Danilov, E. G. Ezhov, et al., “Spectral and Angular Dependences of the Efficiency of Relief-Phase Diffractive Lenses with Two- and Three-Layer Microstructures,” Opt. Spektrosk. 118 (6), 118–125 (2015).

    Article  Google Scholar 

  25. G. I. Greisukh, V. A. Danilov, E. G. Ezhov, et al., “Comparison of Electromagnetic and Scalar Methods for Evaluation of Efficiency of Diffractive Lenses for Wide Spectral Bandwidth,” Opt. Commun. 338, 54–57 (2015).

    Article  ADS  Google Scholar 

  26. H. Yang, C. Xue, C. Li, and J. Wang, “Optimal Design of Multilayer Diffractive Optical Elements with Effective Area Method,” Appl. Opt. 55 (7), 1675–1682 (2016).

    Article  ADS  Google Scholar 

  27. L. Yang, Q. Cui, T. Liu, and C. Xue, “Effects of Manufacturing Errors on Diffraction Efficiency for Multilayer Diffractive Optical Elements,” Appl. Opt. 50 (32), 6128–6133 (2011).

    Article  ADS  Google Scholar 

  28. M. Piao, Q. Cui, H. Zhu, et al., “Diffraction Efficiency Change of Multilayer Diffractive Optics with Environmental Temperature,” Journ. Opt. 16 (3), 035707 (2014).

    Article  ADS  Google Scholar 

  29. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, et al., “Visual Assessment of the Influence of Adverse Diffraction Orders on the Quality of Image Formed by the Refractive-Diffractive Optical System,” Komp. Opt. 38 (3), 418–424 (2014).

    Article  Google Scholar 

  30. G. I. Greisukh, V. A. Danilov, E. G. Ezhov, et al., “Spectral and Angular Dependences of the Efficiency of Relief-Phase Diffractive Lenses with Two- and Three-Layer Microstructures,” Opt. Zh. 82 (5), 56–61 (2015).

    Google Scholar 

  31. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Taking Diffractive Efficiency into Account in the Design of Refractive/Diffractive Optical Systems,” Opt. Zh. 83 (3), 32–38 (2016).

    Google Scholar 

  32. T. Nakai and H. Ogawa, “Research on Multi-Layer Diffractive Optical Elements and Their Application to Camera Lenses,” in Proc. of the Conf. ”Diffractive Optics and Micro-Optics”. Tucson (USA), June 3, 2002. DMA2.

    Google Scholar 

  33. T. Nakai, “Diffractive Optical Element and Optical System Having the Same,” US Patent 2007/0297057 A1, Publ. 27.12.2007.

    Google Scholar 

  34. F. Changjiang, “The Investigation of Large Field of View Eyepiece with Multilayer Diffractive Optical Element,” Proc. SPIE. 9272, 92720N-1 (2014).

    Google Scholar 

  35. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Layout and Design of a Periscope-Type Refraction- Diffraction Objective for a Mobile Communication Device,” Opt. Zh. 83 (11), 51–57 (2016).

    Google Scholar 

  36. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of Plastic Refractive-Diffractive Compact Zoom Lenses for Visible-Near-IR Spectrum,” Appl. Opt. 52 (23), 5843–5850 (2013).

    Article  ADS  Google Scholar 

  37. V. G. Pospekhov and A. V. Kryukov, “Study and Calculation of Compact Periodic-Type Zoom Lens,” Inzhen. Zh. Nauka Innov. 7 (2013). http://engjournal.ru/catalog/pribor/optica/826.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Greisukh.

Additional information

Original Russian Text © A.I. Antonov, G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, 2017, published in Avtometriya, 2017, Vol. 53, No. 5, pp. 4–16.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, A.I., Greisukh, G.I., Ezhov, E.G. et al. Diffractive elements for imaging optical systems. Optoelectron.Instrument.Proc. 53, 421–430 (2017). https://doi.org/10.3103/S8756699017050016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699017050016

Keywords

Navigation