Skip to main content
Log in

Magnetothermal Properties of Heavy Rare Earth Metals and Fe–Rh-Based Alloys

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The review is devoted to theoretical–experimental studies of the magnetothermal properties of several classes of magnetic materials: heavy rare earth metals and a family of binary and three-component alloys based on iron and rhodium. The results of calculations of properties from first principles, the self-consistent (mean) field model, empirical and ad hoc models, and numerical simulation methods are presented and analyzed. As well, numerous experimental data are presented: direct determination of the magnetocaloric effect (MCE), measurement of magnetic characteristics (field and temperature dependences of magnetization and magnetic susceptibility), measurement of temperature dependences of heat capacity, differential calorimetry, Hall magnetometry, EXAFS spectroscopy, scanning and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. V. I. Zverev, ‘‘Magnetothermal properties of heavy rare-earth metals, alloys based on Fe–Pn, nanoparticles of ferromagnetic oxides in the region of phase transitions,’’ Doctoral (Phys. Math.) Dissertation (Lomonosov Moscow State Univ., Moscow, 2022).

  2. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (IOP, Bristol, 2003).

    Book  Google Scholar 

  3. K. A. Gschneidner, Jr. and V. K. Pecharsky, Ann. Rev. Mater. Sci. 30, 387 (2000).

    Article  Google Scholar 

  4. A. M. Tishin, K. A. Gschneidner, and V. K. Pecharsky, Phys. Rev. B 59, 503 (1999).

    Article  Google Scholar 

  5. K. A. Gschneidner, Jr. et al., in Proceedings of the Rare Earths ’98, Mater. Sci. Forum 315, 69 (1999).

    Google Scholar 

  6. M. D. Kuz’min and A. M. Tishin, Cryogenics 32, 545 (1992).

    Article  Google Scholar 

  7. V. I. Zverev, A. M. Tishin, and M. D. Kuz’min, J. Appl. Phys. 107, 043907 (2010).

    Article  Google Scholar 

  8. N. A. Zarkevich and D. D. Johnson, Phys. Rev. Lett. 113, 265701 (2014).

    Article  Google Scholar 

  9. N. A. Zarkevich and D. D. Johnson, Phys. Rev. B 90, 060102 (2014).

    Article  Google Scholar 

  10. S. A. Nikitin et al., Phys. Lett. A 148, 363 (1990).

    Article  Google Scholar 

  11. M. R. Ibarra and P. A. Algarabel, Phys. Rev. B 50, 4196 (1994).

    Article  Google Scholar 

  12. P. A. Algarabel et al., Appl. Phys. Lett. 66, 3061 (1995).

    Article  Google Scholar 

  13. J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33, 1343 (1962).

    Article  Google Scholar 

  14. L. Morellon et al., Phys. Rev. B 62, 1022 (2000).

    Article  Google Scholar 

  15. F. Hu et al., ‘‘Negative thermal expansion in the materials With giant magnetocaloric effect,’’ Front. Chem. Front. 6 (2018).

  16. J. Zhang et al., J. Appl. Phys. 118, 133903 (2015).

    Article  Google Scholar 

  17. E. du Tremolet de Lacheisserie, J. Magn. Magn. Mater. 73, 289 (1988).

    Article  Google Scholar 

  18. B. Owens-Baird et al., Chem. Sci. 11, 5007 (2020).

    Article  Google Scholar 

  19. B. K. Ponomarev, Sov. Phys. JETP 36, 105 (1973).

    Google Scholar 

  20. A. I. Zakharov et al., Sov. Phys. JETP 19, 1348 (1964).

    Google Scholar 

  21. G. Shirane, R. Nathans, and C. W. Chen, Phys. Rev. 134, A1547 (1964).

    Article  Google Scholar 

  22. C. F. Sánchez-Valdis et al., J. Magn. Magn. Mater. 498, 166130 (2020).

    Article  Google Scholar 

  23. A. Chirkova et al., Acta Mater. 106, 15 (2016).

    Article  Google Scholar 

  24. M. P. Annaorazov et al., J. Appl. Phys. 79, 1689 (1996).

    Article  Google Scholar 

  25. V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  Google Scholar 

  26. N. A. Zarkevich, D. D. Johnson, and V. K. Pecharsky, J. Phys. D: Appl. Phys. 51, 024002 (2017).

    Article  Google Scholar 

  27. N. A. Zarkevich and V. I. Zverev, Crystals 10, 815 (2020).

    Article  Google Scholar 

  28. A. K. Pathak et al., ‘‘Modified La–Fe–Si magnetocaloric alloys,’’ US Patent No. US20190272933A1 (2019).

  29. H. N. Bez et al., ‘‘Highly tunable, inexpensive and easily fabricated magnetocaloric materials,’’ US Patent No. US20190214169A1 (2019).

  30. S. Yu. Dan’kov et al., Phys. Rev. B 57, 3478 (1998).

    Article  Google Scholar 

  31. Q. Y. Dong et al., J. Appl. Phys. 127, 033904 (2020).

    Article  Google Scholar 

  32. V. K. Pecharsky et al., ‘‘Magnetocaloric properties of Gd3Al2,’’ in Proceedings of the Conference on Cryocoolers 10 (Springer, Boston, MA, 2002), p. 639.

  33. V. K. Pecharsky and K. A. Gschneidner, ‘‘Gd–Zn alloys as active magnetic regenerator materials for magnetic refrigeration,’’ in Proceedings of the Conference on Cryocoolers 10, Ed. by R. G. Ross (Springer US, Boston, MA, 2002), p. 629.

  34. T. Samanta et al., Appl. Phys. Lett. 101, 242405 (2012).

    Article  Google Scholar 

  35. J. Liu et al., Sci. Rep. 6, 23386 (2016).

    Article  Google Scholar 

  36. A. Giguire et al., Phys. Rev. Lett. 83, 2262 (1999).

    Article  Google Scholar 

  37. A. O. Pecharsky, K. A. Gschneidner, and V. K. Pecharsky, J. Appl. Phys. 93, 4722 (2003).

    Article  Google Scholar 

  38. X. Zhou et al., J. Phys.: Condens. Matter 16 (6), L39 (2004).

    Google Scholar 

  39. M. Pasquale et al., Phys. Rev. B 72, 094435 (2005).

    Article  Google Scholar 

  40. H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).

    Article  Google Scholar 

  41. H. Wada et al., Phys. B (Amsterdam, Neth.) 328, 114 (2003).

  42. P. J. von Ranke, N. A. de Oliveira, and S. Gama, Phys. Lett. A 320, 302 (2004).

    Article  Google Scholar 

  43. Y. Q. Zhang and Z. D. Zhang, J. Alloys Compd. 365, 35 (2004).

    Article  Google Scholar 

  44. A. Fujita et al., Phys. Rev. B 67, 104416 (2003).

    Article  Google Scholar 

  45. S. Fujieda, A. Fujita, and K. Fukamichi, Sci. Technol. Adv. Mater. 4, 339 (2003).

    Article  Google Scholar 

  46. A. Terwey et al., Phys. Rev. B 101, 064415 (2020).

    Article  Google Scholar 

  47. J. C. Debnath et al., Appl. Phys. A 106, 245 (2012).

    Article  Google Scholar 

  48. H. Neves Bez et al., Acta Mater. 173, 225 (2019).

    Article  Google Scholar 

  49. A. Biswas et al., Acta Mater. 180, 341 (2019).

    Article  Google Scholar 

  50. J. L. Yan et al., J. Alloys Compd. 506, 516 (2010).

    Article  Google Scholar 

  51. T. Gottschall et al., Acta Mater. 107, 1 (2016).

    Article  Google Scholar 

  52. T. Gottschall et al., Appl. Phys. Lett. 106, 021901 (2015).

    Article  Google Scholar 

  53. T. Gottschall et al., Adv. Energy Mater. 9, 1901322 (2019).

    Article  Google Scholar 

  54. I. V. Medvedeva et al., J. Alloys Compd. 178, 403 (1992).

    Article  Google Scholar 

  55. H. Feng-xia et al., Chin. Phys. 9, 550 (2000).

    Article  Google Scholar 

  56. F. Hu et al., Appl. Phys. Lett. 78, 3675 (2001).

    Article  Google Scholar 

  57. B. G. Shen et al., Adv. Mater. 21, 4545 (2009).

    Article  Google Scholar 

  58. M. Ilyn et al., J. Magn. Magn. Mater. 290–291, 712 (2005).

    Article  Google Scholar 

  59. F. X. Hu et al., J. Appl. Phys. 97, 10M303 (2005).

  60. Y. I. Spichkin, V. K. Pecharsky, and K. A. Gschneidner, J. Appl. Phys. 89, 1738 (2001).

    Article  Google Scholar 

  61. G. V. Brown, J. Appl. Phys. 47, 3673 (1976).

    Article  Google Scholar 

  62. T. Gottschall et al., Phys. Rev. B 99, 134429 (2019).

    Article  Google Scholar 

  63. S. Pandey et al., J. Appl. Phys. 121, 133901 (2017).

    Article  Google Scholar 

  64. V. Sokolovskiy et al., J. Appl. Phys. 127, 163901 (2020).

    Article  Google Scholar 

  65. F. S. Liu et al., Phys. B (Amsterdam, Neth.) 412, 74 (2013).

  66. A. Quetz et al., J. Alloys Compd. 683, 139 (2016).

    Article  Google Scholar 

  67. E. T. Dilmieva et al., IEEE Trans. Magn. 53 (11), 1 (2017).

    Article  Google Scholar 

  68. V. D. Buchelnikov et al., J. Magn. Magn. Mater. 322, 1597 (2010).

    Article  Google Scholar 

  69. P. Entel et al., J. Phys. D: Appl. Phys. 39, 865 (2006).

    Article  Google Scholar 

  70. M. Phejar, V. Paul-Boncour, and L. Bessais, Intermetallics 18, 2301 (2010).

    Article  Google Scholar 

  71. Y. Chen et al., J. Appl. Phys. 93, 6981 (2003).

    Article  Google Scholar 

  72. V. I. Zverev et al., J. Magn. Magn. Mater. 524, 167593 (2021).

    Article  Google Scholar 

  73. J. S. Amaral and V. S. Amaral, Phys. Status Solidi A 211, 971 (2014).

    Article  Google Scholar 

  74. I. Niknia et al., J. Appl. Phys. 121, 064902 (2017).

    Article  Google Scholar 

  75. A. M. Tishin et al., Int. J. Refriger. 68, 177 (2016).

    Article  Google Scholar 

  76. V. I. Zverev et al., J. Magn. Magn. Mater. 459, 182 (2018).

    Article  Google Scholar 

  77. H. Miwa and K. Yosida, Prog. Theor. Phys. 26, 693 (1961).

    Article  Google Scholar 

  78. Y. Kitano and T. Nagamiya, Prog. Theor. Phys. 31 (1), 1 (1964).

    Article  Google Scholar 

  79. T. Nagamiya, K. Nagata, and Y. Kitano, Prog. Theor. Phys. 27, 1253 (1962).

    Article  Google Scholar 

  80. B. R. Cooper et al., Phys. Rev. 127, 57 (1962).

    Article  Google Scholar 

  81. T. A. Kaplan, Phys. Rev. 124, 329 (1961).

    Article  Google Scholar 

  82. K. Yosida and A. Watabe, Prog. Theor. Phys. 28, 361 (1962).

    Article  Google Scholar 

  83. K. M. Döbrich et al., Phys. Rev. Lett. 104, 246401 (2010).

    Article  Google Scholar 

  84. K. M. Döbrich et al., Phys. Rev. B 81, 012401 (2010).

    Article  Google Scholar 

  85. I. D. Hughes et al., Nature (London, U.K.) 446 (7136), 650 (2007).

    Article  Google Scholar 

  86. I. L. M. Locht et al., Phys. Rev. B 94, 085137 (2016).

    Article  Google Scholar 

  87. E. Mendive-Tapia and J. B. Staunton, Phys. Rev. Lett. 118, 197202 (2017).

    Article  Google Scholar 

  88. E. Mendive-Tapia and J. B. Staunton, J. Appl. Phys. 127, 113903 (2020).

    Article  Google Scholar 

  89. E. M. Tapia, Ab initio Theory of Magnetic Ordering: Electronic Origin of Pair- and Multi-Spin Interactions (Springer Int., Cham, 2020).

    Book  Google Scholar 

  90. F. H. Spedding, J. J. Hanak, and A. H. Daane, J. Less-Common Met. 3, 110 (1961).

    Article  Google Scholar 

  91. F. H. Spedding, A. H. Daane, and K. W. Herrmann, Acta Crystallogr. 9, 559 (1956).

    Article  Google Scholar 

  92. J. R. Banister, S. Legvold, and F. H. Spedding, Phys. Rev. 94, 1140 (1954).

    Article  Google Scholar 

  93. F. Barson, S. Legvold, and F. H. Spedding, Phys. Rev. 105, 418 (1957).

    Article  Google Scholar 

  94. D. R. Behrendt, S. Legvold, and F. H. Spedding, Phys. Rev. 109, 1544 (1958).

    Article  Google Scholar 

  95. J. F. Elliott, S. Legvold, and F. H. Spedding, Phys. Rev. 91, 28 (1953).

    Article  Google Scholar 

  96. B. C. Gerstein et al., J. Chem. Phys. 27, 394 (1957).

    Article  Google Scholar 

  97. R. W. Green, S. Legvold, and F. H. Spedding, Phys. Rev. 122, 827 (1961).

    Article  Google Scholar 

  98. B. L. Rhodes, S. Legvold, and F. H. Spedding, Phys. Rev. 109, 1547 (1958).

    Article  Google Scholar 

  99. L. D. Jennings, R. M. Stanton, and F. H. Spedding, J. Chem. Phys. 27, 909 (1957).

    Article  Google Scholar 

  100. R. R. Gimaev et al., Crystals 11, 82 (2021).

    Article  Google Scholar 

  101. A. S. Komlev et al., Materialia 18, 101166 (2021).

    Article  Google Scholar 

  102. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    Article  Google Scholar 

  103. B. N. Harmon et al., J. Phys. Chem. Solids 56, 1521 (1995).

    Article  Google Scholar 

  104. E. R. Ylvisaker, W. E. Pickett, and K. Koepernik, Phys. Rev. B 79, 035103 (2009).

    Article  Google Scholar 

  105. M. Steinbrecher et al., Nat. Commun. 7, 10454 (2016).

    Article  Google Scholar 

  106. T. Miyamachi et al., Nature (London, U.K.) 503 (7475), 242 (2013).

    Article  Google Scholar 

  107. A. Jacobsson et al., Phys. Rev. B 88, 134427 (2013).

    Article  Google Scholar 

  108. J. K. Glasbrenner, K. M. Bussmann, and I. I. Mazin, Phys. Rev. B 90, 144421 (2014).

    Article  Google Scholar 

  109. R. J. Elliott, ‘‘Phenomenological discussion of magnetic ordering in the heavy rare-earth metals,’’ Phys. Rev. 124, 346 (1961).

    Article  Google Scholar 

  110. J. S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966).

    Book  Google Scholar 

  111. R. R. Gimaev, V. I. Zverev, and V. D. Mello, J. Magn. Magn. Mater. 505, 166781 (2020).

    Article  Google Scholar 

  112. Magnetic Properties of Rare Earth Metals, Ed. by R. Elliott (Springer, US, 1972).

    Google Scholar 

  113. M. D. Kuz’min and A. M. Tishin, ‘‘Theory of crystal-field effects in 3d–4f intermetallic compounds,’’ in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2007), Vol. 17, Chap. 3, p. 149.

    Google Scholar 

  114. B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: The Magnetic Heavy Rare-Earths (Academic, London, 1977).

    Google Scholar 

  115. A. S. Carrizo and R. E. Camley, Phys. Rev. B 45, 13117 (1992).

    Article  Google Scholar 

  116. A. S. Carrizo, R. E. Camley, and R. L. Stamps, Phys. Rev. B 50, 13453 (1994).

    Article  Google Scholar 

  117. R. E. Camley and D. R. Tilley, Phys. Rev. B 37, 3413 (1988).

    Article  Google Scholar 

  118. R. E. Camley, Phys. Rev. B 39, 12316 (1989).

    Article  Google Scholar 

  119. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  120. J. Yu et al., Phys. Rev. B 91, 014404 (2015).

    Article  Google Scholar 

  121. S. Legvold, ‘‘Rare earth metals and alloys,’’ in Handbook of Ferromagnetic Materials (Elsevier, Amsterdam, 1980), Vol. 1, Chap. 3, p. 183.

    Google Scholar 

  122. V. I. Zverev et al., J. Phys.: Condens. Matter 26, 066001 (2014).

    Google Scholar 

  123. V. I. Zverev et al., J. Phys.: Condens. Matter 27, 146002 (2015).

    Google Scholar 

  124. D. Fort, V. K. Pecharsky, and K. A. Gschneidner, J. Alloys Compd. 226, 190 (1995).

    Article  Google Scholar 

  125. A. S. Chernyshov et al., Phys. Rev. B 71, 184410 (2005).

    Article  Google Scholar 

  126. M. J. Pechan and C. Stassis, J. Appl. Phys. 55, 1900 (1984).

    Article  Google Scholar 

  127. V. K. Pecharsky, K. A. Gschneidner, and D. Fort, Phys. Rev. B 47, 5063 (1993).

    Article  Google Scholar 

  128. S. A. Nikitin, A. M. Tishin, and P. I. Leontiev, J. Magn. Magn. Mater. 92, 405 (1991).

    Article  Google Scholar 

  129. S. A. Nikitin, A. M. Tishin, and S. V. Red’ko, Phys. Met. Metallogr. 66, 77 (1990).

    Google Scholar 

  130. A. S. Andreenko et al., Sov. Phys. Usp. 32, 649 (1989).

    Article  Google Scholar 

  131. K. P. Belov et al., Sov. Phys. JETP 13, 1096 (1961).

    Google Scholar 

  132. K. P. Belov, R. Z. Levitin, and B. K. Ponomarev, Sov. Phys. JETP 24, 1101 (1967).

    Google Scholar 

  133. M. T. Alkhafaji and N. Ali, J. Alloys Compd. 250, 659 (1997).

    Article  Google Scholar 

  134. H. Bartholin and D. Bloch, J. Phys. Chem. Solids 29, 1063 (1968).

    Article  Google Scholar 

  135. L. Alberts and P. de V. du Plessis, J. Appl. Phys. 39, 581 (1968).

    Article  Google Scholar 

  136. F. J. Darnell, Phys. Rev. 132, 1098 (1963).

    Article  Google Scholar 

  137. N. Ali et al., Phys. Rev. B 40, 11414 (1989).

    Article  Google Scholar 

  138. S. Bates et al., J. Phys. C: Solid State Phys. 21, 4125 (1988).

    Article  Google Scholar 

  139. G. H. F. Brits and P. de V. du. Plessis, J. Phys. F: Met. Phys. 18, 2659 (1988).

    Article  Google Scholar 

  140. R. A. Cowley and S. Bates, J. Phys. C: Solid State Phys. 21, 4113 (1988).

    Article  Google Scholar 

  141. A. V. Andrianov et al., J. Magn. Magn. Mater. 97, 246 (1991).

    Article  Google Scholar 

  142. H. U. Astrom and G. Benediktsson, J. Phys. F: Met. Phys. 18, 2113 (1988).

    Article  Google Scholar 

  143. N. Ali and F. Willis, Phys. Rev. B 42, 6820 (1990).

    Article  Google Scholar 

  144. S. Buck and M. Fdhnle, Phys. Rev. B 57, R14044 (1998).

    Article  Google Scholar 

  145. B. R. Cooper, Phys. Rev. Lett. 19, 900 (1967).

    Article  Google Scholar 

  146. B. R. Cooper, Solid State Phys. 21, 393 (1968).

    Article  Google Scholar 

  147. B. R. Cooper, Phys. Rev. 169, 281 (1968).

    Article  Google Scholar 

  148. V. I. Zverev and R. R. Gimaev, Phys. B (Amsterdam, Neth.) 502, 187 (2016).

  149. Y. I. Spichkin and A. M. Tishin, J. Alloys Compd. 403, 38 (2005).

    Article  Google Scholar 

  150. S. A. Nikitin, Magnetic Properties of Rare Earth Metals and their Alloys (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  151. W. Klemm and H. Bommer, Zeitschr. Anorg. Allgem. Chem. 231, 138 (1937).

    Article  Google Scholar 

  152. F. Trombe, Ann. Phys. EDP Sci. 11, 385 (1937).

    Article  Google Scholar 

  153. M. F. Trombe, J. Phys. Radium. Rev. Gin. Electr. 12, 222 (1951).

    Google Scholar 

  154. B. J. Beaudry and K. A. Gschneidner, ‘‘Preparation and basic properties of the rare earth metals,’’ in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 1978), Vol. 1, Chap. 2, p. 173.

    Google Scholar 

  155. N. Kurti and R. S. Safrata, Philos. Mag. 3, 780 (1958).

    Article  Google Scholar 

  156. L. T. Crane, J. Chem. Phys. 36, 10 (1962).

    Article  Google Scholar 

  157. O. V. Lounasmaa, Phys. Rev. 129, 2460 (1963).

    Article  Google Scholar 

  158. L. W. Roeland et al., J. Phys. F: Met. Phys. 5 (12), L233 (1975).

    Article  Google Scholar 

  159. A. E. Miller et al., J. Chem. Phys. 55, 2647 (1971).

    Article  Google Scholar 

  160. F. J. Cadieu and D. H. Douglass, Phys. Rev. Lett. 21, 680 (1968).

    Article  Google Scholar 

  161. A. V. Voronel, S. R. Garber, and V. M. Mamnitskii, Sov. Phys. JETP 28, 1065 (1968).

    Google Scholar 

  162. E. B. Amitin et al., Sov. Phys. Solid State 162, 599 (1970).

    Google Scholar 

  163. L. A. Boyarskii and M. A. Starikov, Sov. Phys. Solid State 163, 2569 (1970).

    Google Scholar 

  164. E. B. Amitin et al., J. Chem. Thermodyn. 15, 181 (1983).

    Article  Google Scholar 

  165. E. B. Amitin, V. G. Bessergenev, and Y. A. Kovalevskaya, Sov. Phys. JETP 57, 117 (1983).

    Google Scholar 

  166. E. B. Amitin, V. G. Bessergenev, and Y. A. Kovalevskaya, J. Phys. F: Met. Phys. 14, 2935 (1984).

    Article  Google Scholar 

  167. V. G. Bessergenev and L. A. Boyarskii, Sov. Phys. Solid State 167, 1036 (1982).

    Google Scholar 

  168. E. B. Amitin et al., Sov. Phys. Solid State 168, 136 (1982).

    Google Scholar 

  169. H. Marshak, W. D. Brewer, and P. Roman, Phys. Rev. C 40, 1759 (1989).

    Article  Google Scholar 

  170. W. D. Brewer, P. Roman, and H. Marshak, Hyperfine Interact. 51, 1129 (1989).

    Article  Google Scholar 

  171. J. Boysen et al., Phys. Rev. B 35, 1500 (1987).

    Article  Google Scholar 

  172. P. Roman et al., Phys. Rev. Lett. 56, 1976 (1986).

    Article  Google Scholar 

  173. J. Kapoor et al., Phys. Rev. Lett. 76, 1537 (1996).

    Article  Google Scholar 

  174. W. D. Brewer et al., Phys. Rev. B 51, 12595 (1995).

    Article  Google Scholar 

  175. W. D. Brewer et al., J. Alloys Compd. 225, 456 (1995).

    Article  Google Scholar 

  176. G. S. Burkhanov et al., Appl. Phys. Lett. 104, 242402 (2014).

    Article  Google Scholar 

  177. G. S. Burkhanov et al., Dokl. Phys. 61, 168–171 (2016).

    Article  Google Scholar 

  178. A. G. Blinov et al., Int. J. Mater. Product Technol. 8, 23 (1993).

    Google Scholar 

  179. Z. Charifoulline, IEEE Trans. Appl. Supercond. 16, 1188 (2006).

    Article  Google Scholar 

  180. B. A. Strukov, Phase Trans. 15, 143 (1989).

    Article  Google Scholar 

  181. L. P. Gor’kov and A. V. Sokol, Sov. Phys. JETP 66, 1267 (1987).

    Google Scholar 

  182. A. P. Levanyuk et al., Sov. Phys. JETP 49, 176 (1979).

    Google Scholar 

  183. K. A. Gschneidner, J. Alloys Compd. 193, 1 (1993).

    Article  Google Scholar 

  184. T.-W. E. Tsang et al., Phys. Rev. B 31, 235 (1985).

    Article  Google Scholar 

  185. R. W. Hill et al., J. Phys. F: Met. Phys. 17, 1867 (1987).

    Article  Google Scholar 

  186. J. W. Herchenroeder and K. A. Gschneidner, Bull. Alloy Phase Diagrams 9 (1), 2 (1988).

    Article  Google Scholar 

  187. K. A. Gschneidner, Bull. Alloy Phase Diagrams 11, 106 (1990).

    Article  Google Scholar 

  188. T. Alonso et al., Scr. Metallurg. Mater. 25, 1607 (1991).

    Article  Google Scholar 

  189. T. Alonso et al., Scr. Metallurg. Mater. 26, 1931 (1992).

    Article  Google Scholar 

  190. R. Peierls, Proc. Phys. Soc. 52, 34 (1940).

    Article  Google Scholar 

  191. F. R. N. Nabarro, Mater. Sci. Eng. A 234–236, 67 (1997).

    Article  Google Scholar 

  192. F. R. N. Nabarro, Proc. Phys. Soc. 59, 256 (1947).

    Article  Google Scholar 

  193. A. R. Rosenfield, Dislocation Dynamics (McGraw-Hill, New York, 1968).

    Google Scholar 

  194. J.-U. Thiele, S. Maat, and E. E. Fullerton, Appl. Phys. Lett. 82, 2859 (2003).

    Article  Google Scholar 

  195. V. I. Zverev et al., ‘‘Smart magnetocaloric coatings for implants: Controlled drug release for targeted delivery,’’ Smart Mater. Struct. (submitted).

  196. A. M. Tishin, Yu. A. Rochev, and A. V. Gorelov, ‘‘Carrier for drugs and biologically active substances for treatment and diagnostics and its use for the creation of medicines and a method for controlled controlled delivery of a drug or biologically active substance with controlled desorption,’’ RF Patent No. 2373957 C2 (2009).

  197. A. M. Tishin, J. A. Rochev, and A. V. Gorelov, ‘‘Magnetic carrier and medical preparation for controllable delivery and release of active substances, a method of production and method of treatment using thereof,’’ WO Patent No. 2008/044963 (2008).

  198. A. M. Tishin, J. A. Rochev, and A. V. Gorelov, ‘‘Magnetic carrier and medical preparation for controllable delivery and release of active substances, a method of production and method of treatment using thereof,’’ DE Patent No. 112006004066 USA (2009).

  199. S. O. Mariager et al., Phys. Rev. Lett. 108, 087201 (2012).

    Article  Google Scholar 

  200. A. X. Gray et al., Phys. Rev. Lett. 108, 257208 (2012).

    Article  Google Scholar 

  201. D. W. Cooke et al., Phys. Rev. Lett. 109, 255901 (2012).

    Article  Google Scholar 

  202. P. M. Derlet, Phys. Rev. B 85, 174431 (2012).

    Article  Google Scholar 

  203. M. A. Vries et al., New J. Phys. 15, 013008 (2013).

    Article  Google Scholar 

  204. J. B. Staunton et al., Phys. Rev. B 89, 054427 (2014).

    Article  Google Scholar 

  205. R. R. Gimaev, ‘‘Features of the magnetocaloric effect and magnetic properties of Fe–Rh alloys in the region of the antiferromagnetism-ferromagnetism phase transition,’’ Cand. Sci. (Phys. Math.) Dissertation (Lomonosov Moscow State Univ., Moscow, 2017).

  206. R. R. Gimaev, A. A. Vaulin, A. F. Gubkin, and V. I. Zverev, Phys. Met. Metallogr. 121, 823 (2020).

    Article  Google Scholar 

  207. L. J. Swartzendruber, Bull. Alloy Phase Diagr. 5, 456 (1984).

    Article  Google Scholar 

  208. M. Fallot, Ann. Phys. (Paris) 10, 291 (1938).

    Google Scholar 

  209. M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939).

    Google Scholar 

  210. J. S. Kouvel, J. Appl. Phys. 37, 1257 (1966).

    Article  Google Scholar 

  211. L. Muldawer and F. de Bergevin, J. Chem. Phys. 35, 1904 (1961).

    Article  Google Scholar 

  212. M. J. Jiminez, A. B. Schvval, and G. F. Cabeza, Comput. Mater. Sci. 172, 109385 (2020).

    Article  Google Scholar 

  213. E. Kren, L. Pal, and P. Szabo, Phys. Lett. 9, 297 (1964).

    Article  Google Scholar 

  214. F. de Bergevin and L. Muldawer, C. R. Hebd. Seances Acad. Sci. 253, 1347 (1961).

    Google Scholar 

  215. G. Shirane et al., J. Appl. Phys. 34, 1044 (1963).

    Article  Google Scholar 

  216. E. F. Bertaut et al., J. Appl. Phys. 33, 1123 (1962).

    Article  Google Scholar 

  217. M. E. Gruner, E. Hoffmann, and P. Entel, Phys. Rev. B 67, 064415 (2003).

    Article  Google Scholar 

  218. G. Shirane, C. W. Chen, and R. Nathans, Phys. Rev. 134, A1547 (1964).

    Article  Google Scholar 

  219. N. Kunitomi, M. Kohgi, and Y. Nakai, Phys. Lett. A 37, 333 (1971).

    Article  Google Scholar 

  220. Cs. Hargitai, Phys. Lett. 17, 178 (1965).

    Article  Google Scholar 

  221. S. A. Nikitin et al., Tech. Phys. Lett. 17, 437 (1991).

    Google Scholar 

  222. M. P. Annaorazov et al., Cryogenics 32, 867 (1992).

    Article  Google Scholar 

  223. M. P. Annaorazov, H. M. Güven, and K. Bärner, J. Alloys Compd. 397, 26 (2005).

    Article  Google Scholar 

  224. V. I. Zverev et al., Appl. Phys. Lett. 108, 192405 (2016).

    Article  Google Scholar 

  225. R. Barua, F. Jiminez-Villacorta, and L. H. Lewis, J. Appl. Phys. 115, 17A903 (2014).

  226. J. Liu et al., Nat. Mater. 11, 620 (2012).

    Article  Google Scholar 

  227. C. Kittel, Phys. Rev. 120, 335 (1960).

    Article  MathSciNet  Google Scholar 

  228. J. A. Ricodeau and D. Melville, J. Phys. F: Met. Phys. 2, 337 (1972).

    Article  Google Scholar 

  229. C. Koenig, J. Phys. F: Met. Phys. 12, 1123 (1982).

    Article  Google Scholar 

  230. V. L. Moruzzi and P. M. Marcus, Phys. Rev. B 46, 2864 (1992).

    Article  Google Scholar 

  231. R. Y. Gu and V. P. Antropov, Phys. Rev. B 72, 012403 (2005).

    Article  Google Scholar 

  232. L. M. Sandratskii and P. Mavropoulos, Phys. Rev. B 83, 174408 (2011).

    Article  Google Scholar 

  233. J. B. Staunton et al., Phys. Rev. B 89, 054427 (2014).

    Article  Google Scholar 

  234. I. Turek et al., Czechosl. J. Phys. 52, 203 (2002).

    Article  Google Scholar 

  235. I. Turek et al., J. Magn. Magn. Mater. 240, 162 (2002).

    Article  Google Scholar 

  236. V. L. Moruzzi and P. M. Marcus, Phys. Rev. B 48, 16106 (1993).

    Article  Google Scholar 

  237. A. Hernando et al., Acta. Phys. Polon. A 90, 1227 (1997).

    Article  Google Scholar 

  238. P. Tu et al., J. Appl. Phys. 40, 1368 (1969).

    Article  Google Scholar 

  239. W. Lu, N. T. Nam, and T. Suzuki, J. Appl. Phys. 105, 07A904 (2009).

  240. C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962).

    Article  Google Scholar 

  241. D. S. Rodbell and C. P. Bean, J. Appl. Phys. 33, 1037 (1962).

    Article  Google Scholar 

  242. G. Ju et al., Phys. Rev. Lett. 93, 197403 (2004).

    Article  Google Scholar 

  243. F. Quirin et al., Phys. Rev. B 85, 020103 (2012).

    Article  Google Scholar 

  244. U. Shymanovich et al., AIP Conf. Proc. 1278, 558 (2010).

    Article  Google Scholar 

  245. J.-U. Thiele, M. Buess, and C. H. S. Back, Appl. Phys. Lett. 85, 2857 (2004).

    Article  Google Scholar 

  246. I. Radu et al., Phys. Rev. B 81, 104415 (2010).

    Article  Google Scholar 

  247. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).

    Article  Google Scholar 

  248. S. Günther et al., Phys. Rev. B 90, 180407 (2014).

    Article  Google Scholar 

  249. E. Valiev et al., Intermetallics 108, 81 (2019).

    Article  Google Scholar 

  250. N. A. de Oliveira et al., Phys. Rev. B 66, 094402 (2002).

    Article  Google Scholar 

  251. N. P. Grazhdankina, Phys. Usp. 11, 727 (1969).

    Article  Google Scholar 

  252. L. H. Lewis, C. H. Marrows, and S. Langridge, J. Phys. D: Appl. Phys. 49, 323002 (2016).

    Article  Google Scholar 

  253. E. A. Zavadskii and V. I. Valkov, Magnetic Phase Transitions (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  254. G. Shirane et al., J. Appl. Phys. 34, 1044 (1963).

    Article  Google Scholar 

  255. V. L. Moruzzi and P. M. Marcus, Solid State Commun. 83, 735 (1992).

    Article  Google Scholar 

  256. K. Nishimura et al., Mater. Trans. 49, 1753 (2008).

    Article  Google Scholar 

  257. M. Manekar and S. B. Roy, J. Phys. D: Appl. Phys. 41, 192004 (2008).

    Article  Google Scholar 

  258. J. M. Lommel and J. S. Kouvel, J. Appl. Phys. 38, 1263 (1967).

    Article  Google Scholar 

  259. M. Takahashi and R. Oshima, Mater. Trans. 36, 735 (1995).

    Article  Google Scholar 

  260. R. Barua, F. Jiminez-Villacorta, and L. H. Lewis, Appl. Phys. Lett. 103, 102407 (2013).

    Article  Google Scholar 

  261. M. L. Arregunn-Hernbndez et al., J. Alloys Compd. 871, 159586 (2021).

    Article  Google Scholar 

  262. O. Gutfleisch et al., Philos. Trans. R. Soc., Ser. A 374 (2074), 20150308 (2016).

    Google Scholar 

  263. T. Zhou et al., Phys. Lett. A 377, 3052 (2013).

    Article  Google Scholar 

  264. R. Barua, F. Jiminez-Villacorta, and L. H. Lewis, J. Appl. Phys. 115, 17A903 (2014).

  265. M. Manekar and S. B. Roy, J. Phys. D: Appl. Phys. 44, 242001 (2011).

    Article  Google Scholar 

  266. N. V. Baranov, Y. A. Barabanova, and A. I. Kozlov, Phys. Met. Metallogr. 72 (5), 65 (1991).

    Google Scholar 

  267. N. V. Baranov and E. A. Barabanova, J. Alloys Compd. 219, 139 (1995).

    Article  Google Scholar 

  268. A. M. Chirkova et al., Solid State Phenom. 190, 299 (2012).

    Article  Google Scholar 

  269. S. Yuasa et al., IEEE Trans. J. Magn. Jpn. 9, 202 (1994).

    Article  Google Scholar 

  270. S. Yuasa et al., J. Phys. Soc. Jpn. 64, 3978 (1995).

    Article  Google Scholar 

  271. H. Miyajima, S. Yuasa, and Y. Otani, Jpn. J. Appl. Phys. 32 (S3), 232 (1993).

    Article  Google Scholar 

  272. S. Yuasa et al., J. Phys. Soc. Jpn. 64, 4906 (1995).

    Article  Google Scholar 

  273. T. Miyanaga et al., J. Phys.: Conf. Ser. 190, 012097 (2009).

    Google Scholar 

  274. Y. Wakisaka et al., Phys. Rev. B 92, 184408 (2015).

    Article  Google Scholar 

  275. P. Kushwaha et al., J. Phys.: Condens. Matter 24, 096005 (2012).

    Google Scholar 

  276. P. Kushwaha et al., Phys. Rev. B 80, 174413 (2009).

    Article  Google Scholar 

  277. M. J. Jiminez et al., J. Magn. Magn. Mater. 538, 168258 (2021).

    Article  Google Scholar 

  278. V. I. Zverev et al., J. Magn. Magn. Mater. 522, 167560 (2021).

    Article  Google Scholar 

  279. A. S. Komlev et al., J. Alloys Compd. 898, 163092 (2022).

    Article  Google Scholar 

  280. W. Lu, N. T. Nam, and T. Suzuki, IEEE Trans. Magn. 45, 2716 (2009).

    Article  Google Scholar 

  281. E. Lovell et al., Adv. Energy Mater. 5, 1401639 (2015).

    Article  Google Scholar 

  282. E. Lovell et al., Adv. Sci. Technol. 93, 219 (2014). https://doi.org/10.4028/www.scientific.net/ AST.93.219

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-22-00291). The original studies of the authors presented in the work were performed on equipment purchased as part of the Moscow State University development program. Komlev A.S. thanks Fund ‘‘BASIS’’ for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Komlev, R. A. Makarin, R. R. Gimaev or V. I. Zverev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komlev, A.S., Makarin, R.A., Gimaev, R.R. et al. Magnetothermal Properties of Heavy Rare Earth Metals and Fe–Rh-Based Alloys. Moscow Univ. Phys. 77, 690–712 (2022). https://doi.org/10.3103/S0027134922050083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922050083

Keywords:

Navigation