Skip to main content
Log in

Brillouin Lasers and Sensors: Trends and Possibilities

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Novel techniques of photonics based on stimulated Brillouin scattering (SBS) in optical fibers are considered. The main attention is paid to the original schemes of narrow-band low-noise lasers and their possible applications in distributed fiber sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. V. S. Starunov and I. L. Fabelinskiĭ, ‘‘Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,’’ Sov. Phys. Usp. 98, 441–491 (1970). https://doi.org/10.1070/PU1970v012n04ABEH003903

    Article  Google Scholar 

  2. A. M. Rubenchik, ‘‘On the problem of laser thermonuclear synthesis,’’ Avtometriya 5, 80–93 (1979).

    Google Scholar 

  3. M. P. Petrov and E. A. Kuzin, ‘‘Stimulated Briollouin scattering in optical fibers, and wavefront reversal,’’ Sov. Phys. Solid State 25, 188 (1983).

    Google Scholar 

  4. E. M. Dianov, A. Ya. Karasik, A. V. Lutchnikov, and A. N. Pilipetskii, ‘‘Saturation effects at backward-stimulated scattering in the single-mode regime of interaction,’’ Opt. Quantum Electron. 21, 381–395 (1989). https://doi.org/10.1007/BF02028181

    Article  Google Scholar 

  5. G. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, Calif., 2001).

    MATH  Google Scholar 

  6. E. Kuzin, M. Petrov, and A. Fotiadi, ‘‘Fiber-optic stimulated-Brillouin-scattering amplifier,’’ Sov. Phys. Tech. Phys.33, 206–209 (1988).

    Google Scholar 

  7. E. A. Kuzin, M. P. Petrov, and A. A. Fotiadi, ‘‘Phase conjugation by SMBS in optical fibers,’’ in Optical Phase Conjugation, Ed. by D. P. Gower (Springer-Verlag, 1994), pp. 74–96.

    Google Scholar 

  8. V. V. Spirin, J. L. Bueno Escobedo, D. A. Korobko, P. Mégret, and A. A. Fotiadi, ‘‘Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator,’’ Opt. Express 28, 478–484 (2020). https://doi.org/10.1364/OE.28.000478

    Article  ADS  Google Scholar 

  9. V. V. Spirin, J. L. Bueno Escobedo, D. A. Korobko, P. Mégret, and A. A. Fotiadi, ‘‘Dual-frequency laser comprising a single fiber ring cavity for self-injection locking of DFB laser diode and Brillouin lasing,’’ Opt. Express 28, 37322–37333 (2020). https://doi.org/10.1364/OE.406040

    Article  ADS  Google Scholar 

  10. V. V. Spirin, J. L. Bueno Escobedo, S. V. Miridonov, M. C. Maya Sánchez, C. A. López-Mercado, D. A. Korobko, I. O. Zolotovskii, and A. A. Fotiadi, ‘‘Sub-kilohertz Brillouin fiber laser with stabilized self-injection locked DFB pump laser,’’ Opt. Laser Technol. 141, 107156 (2021). https://doi.org/10.1016/j.optlastec.2021.107156

    Article  Google Scholar 

  11. V. V. Spirin, C. A. López-Mercado, P. Mégret and A. A. Fotiadi, ‘‘Fiber laser for phase-sensitive optical time-domain reflectometry,’’ in Selected Topics on Optical Fiber Technologies and Applications (Intech, 2018), pp. 197–211. https://doi.org/10.5772/intechopen.72553

  12. J. L. Bueono Escobedo, V. V. Spirin, C. A. López-Mercado, A. Márquez Lucero, P. Mégret, I. O. Zolotovskii, and A. A. Fotiadi, ‘‘Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor,’’ Results Phys. 7, 641–643 (2017). https://doi.org/10.1016/j.rinp.2017.01.013

    Article  ADS  Google Scholar 

  13. J. L. Bueno Escobedo, J. Jason, C. A. López-Mercado, V. V. Spirin, M. Wuilpart, P. Megret, D. A. Korobko, I. O. Zolotovskiy, A. A. Fotiadi, ‘‘Distributed measurements of vibration frequency using phase-OTDR with a DFB laser self-stabilized through PM fiber ring cavity,’’ Results Phys. 12, 1840–1842 (2019). https://doi.org/10.1016/j.rinp.2019.02.023

    Article  ADS  Google Scholar 

  14. V. V. Spirin, C. A. López-Mercado, M. Wuilpart, D. A. Korobko, I. O. Zolotovsky, and A. A. Fotiadi, ‘‘Using a semiconductor laser with frequency capture as an operating optical generator of a coherent reflectometer for distributed vibration frequency measurements,’’ Instrum. Exp. Tech. 63, 476–480 (2020). https://doi.org/10.1134/S002044122005005X

    Article  Google Scholar 

  15. C. A. Lopez-Mercado, D. A. Korobko, I. O. Zolotovskii, and A. A. Fotiadi, ‘‘Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis,’’ Sensors 21, 6859 (2021). https://doi.org/10.3390/s21206859

    Article  ADS  Google Scholar 

  16. Zh. Yang, C. Li, Sh. Xu, and Ch. Yang, Single-Frequency Fiber Lasers, Optical and Fiber Communications Reports, Vol. 8 (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-13-6080-0

  17. A. D. Vladimirskaya, M. I. Skvortsov, A. A. Wolf, I. A. Lobach, and S. I. Kablukov, ‘‘Single-frequency thulium doped fiber laser with distributed feedback,’’ Optoelectron., Instrum. Data Process. 56, 405–411 (2020). https://doi.org/10.3103/S8756699020040147

    Article  ADS  Google Scholar 

  18. S. A. Babin and I. D. Vatnik, ‘‘Random-distributed feedback fiber lasers based on Rayleigh scattering,’’ Optoelectron., Instrum. Data Process. 49, 323–344 (2013). https://doi.org/10.3103/S8756699013040018

    Article  Google Scholar 

  19. S. M. Popov, O. V. Butov, A. P. Bazakutsa, M. Yu. Vyatkin, Yu. K. Chamorovskii, and A. A. Fortiadi, ‘‘Random lasing in a short Er-doped artificial Rayleigh fiber,’’ Results Phys. 16, 102868 (2020). https://doi.org/10.1016/j.rinp.2019.102868

    Article  Google Scholar 

  20. S. M. Popov, O. V. Butov, Y. K. Chamorovski, V. A. Isaev, P. Mégret, D. A. Korobko, I. O. Zolotovskii, and A. A. Fotiadi, ‘‘Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings,’’ Results Phys. 9, 806–808 (2018). https://doi.org/10.1016/j.rinp.2018.03.044

    Article  ADS  Google Scholar 

  21. Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and A. A. Vlasov, ‘‘An interrogation technique for fiber Bragg grating sensors based on optical time-domain reflectometry,’’ Optoelectron., Instrum. Data Process. 44, 178–182 (2008). https://doi.org/10.3103/S8756699008020131

    Article  Google Scholar 

  22. S. A. Babin, A. G. Kuznetsov, and I. S. Shelemba, ‘‘Comparison of temperature distribution measurement methods with the use of the Bragg gratingsand Raman scattering of light in optical fibers,’’ Optoelectron., Instrum. Data Process. 46, 353–359 (2010). https://doi.org/10.3103/S8756699010040084

    Article  Google Scholar 

  23. E. G. Shapiro and D. A. Shapiro, ‘‘Optimization of the capacity of a fiber communication line with nonlinear memory,’’ Optoelectron., Instrum. Data Process. 54, 411–418 (2018). https://doi.org/10.3103/S8756699018040143

    Article  ADS  Google Scholar 

  24. I. Sh. Steinberg, P. E. Tverdokhleb, and A. Yu. Belikov, ‘‘Analysis and imaging of internal inhomogeneities in transparent optical materials by three-dimensional laser heterodyne microprobing,’’ Optoelectron., Instrum. Data Process. 54, 546–556 (2018). https://doi.org/10.3103/S8756699018060031

    Article  ADS  Google Scholar 

  25. Z. Fang, H. Cai, G. Chen, and R. Qu, Single Frequency Semiconductor Lasers, Optical and Fiber Communication Reports, Vol. 9 (Springer, Singapore, 2017). https://doi.org/10.1007/978-981-10-5257-6

  26. K. Petermann, ‘‘External optical feedback phenomena in semiconductor lasers,’’ IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995). https://doi.org/10.1109/2944.401232

    Article  ADS  Google Scholar 

  27. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, Springer Series in Optical Sciences, Vol. 111 (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-30147-6

  28. R. R. Galiev, N. G. Pavlov, N. M. Kondratiev, S. Koptyaev, V. E. Lobanov, A. S. Voloshin, A. S. Gorodnitskiy, and M. L. Gorodetsky, ‘‘Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators,’’ Opt. Express 26, 30509–30522 (2018). https://doi.org/10.1364/OE.26.030509

    Article  ADS  Google Scholar 

  29. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, ‘‘Ultralow noise miniature external cavity semiconductor laser,’’ Nat. Commun. 6, 7371 (2015). https://doi.org/10.1038/ncomms8371

    Article  ADS  Google Scholar 

  30. T. Lan, Zh. Cao, L. Huang, Yu. Li, F. Li, L. Jiang, P. I. Iroegbu, L. Dang, Q. Gao, L. Liang, K. Mei, S. Fu, G. Yin, and T. Zhu, ‘‘Ultra-narrow-linewidth DFB laser array based on dual-cavity feedback,’’ Opt. Express 30, 14617–14628 (2022). https://doi.org/10.1364/OE.447483

    Article  ADS  Google Scholar 

  31. F. Li, L. Huang, L. Dang, G. Yin, L. Gao, T. Lan, Yu. Li, L. Jiang, L. Shi, and T. Zhu, ‘‘Self-adaptive single frequency laser assisted by distributed feedbacks,’’ (2020). arXiv:2011.13840 [physics.optics]

  32. J. Geng, L. Yang, Sh. Zhao, and Yo. Zhang, ‘‘Resonant micro-optical gyro based on self-injection locking,’’ Opt. Express 28, 32907–32915 (2020). https://doi.org/10.1364/OE.405974

    Article  ADS  Google Scholar 

  33. D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, ‘‘High-power sub-kHz linewidth lasers fully integrated on silicon,’’ Optica 6, 745–752 (2019). https://doi.org/10.1364/OPTICA.6.000745

    Article  ADS  Google Scholar 

  34. Sh. Shao, J. Li, Yu. Wu, S. Yang, H. Chen, and M. Chen, ‘‘Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,’’ Opt. Lett. 46, 3251–3254 (2021). https://doi.org/10.1364/OL.432152

    Article  ADS  Google Scholar 

  35. V. A. Gaisler, I. A. Derebezov, A. V. Gaisler, D. V. Dmitriev, A. I. Toropov, M. M. Kachanova, Yu. A. Zhivodkov, A. S. Kozhuhov, D. V. Scheglov, and A. V. Latyshev, ‘‘Subminiature light sources based on semiconductor nanostructures,’’ Optoelectron., Instrum. Data Process. 56, 518–526 (2020). https://doi.org/10.3103/S8756699020050052

    Article  ADS  Google Scholar 

  36. L. Jiang, L. Shi, J. Luo, Q. Gao, M. Bai, T. Lan, P. I. Iroegbu, L. Dang, L. Huang, and T. Zhu, ‘‘Simultaneous self-injection locking of two VCSELs to a single whispering-gallery-mode microcavity,’’ Opt. Express 29, 37845–37851 (2021). https://doi.org/10.1364/OE.441595

    Article  ADS  Google Scholar 

  37. V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, ‘‘Single cut technique for adjustment of doubly resonant Brillouin laser cavities,’’ Opt. Lett. 38, 2528–2530 (2013). https://doi.org/10.1364/OL.38.002528

    Article  ADS  Google Scholar 

  38. F. Wei, F. Yang, X. Zhang, D. Xu, M. Ding, L. Zhang, D. Chen, H. Cai, Z. Fang, and G. Xijia, ‘‘Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity,’’ Opt. Express 24, 17406-17415 (2016). https://doi.org/10.1364/OE.24.017406

    Article  ADS  Google Scholar 

  39. V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, ‘‘Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,’’ Laser Phys. Lett. 9, 377 (2012). https://doi.org/10.7452/lapl.201110138

    Article  ADS  Google Scholar 

  40. V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, ‘‘A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,’’ Laser Phys. Lett. 10, 015102 (2013). https://doi.org/10.1088/1612-2011/10/1/015102

    Article  ADS  Google Scholar 

  41. V. V. Spirin, M. Castro, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, ‘‘Optical locking of two semiconductor lasers through high-order Brillouin Stokes components in optical fiber,’’ Laser Phys. 22, 760–764 (2012). https://doi.org/10.1134/S1054660X12040214

    Article  ADS  Google Scholar 

  42. C. E. Preda, A. A. Fotiadi, and P. Mégret, ‘‘Numerical approximation for Brillouin fiber ring resonator,’’ Opt. Express 20, 5783-5788 (2012). https://doi.org/10.1364/OE.20.005783

    Article  ADS  Google Scholar 

  43. D. A. Korobko, I. O. Zolotovskii, V. V. Svetukhin, A. V. Zhukov, A. N. Fomin, C. V. Borisova, and A. A. Fotiadi, ‘‘Detuning effects in Brillouin ring microresonator laser,’’ Opt. Express 28, 4962–4972 (2020). https://doi.org/10.1364/OE.382357

    Article  ADS  Google Scholar 

  44. C. A. López-Mercado, V. V. Spirin, J. L. Bueno Escobedo, A. Márquez Lucero, P. Mégret, I. O. Zolotovskii, and A. A. Fotiadi, ‘‘Locking of the DFB laser through fiber optic resonator on different coupling regimes,’’ Opt. Commun. 359, 195–199 (2016). https://doi.org/10.1016/j.optcom.2015.09.076

    Article  ADS  Google Scholar 

  45. J. L. Bueno Escobedo, V. V. Spirin, C. A. López-Mercado, P. Mégret, I. O. Zolotovskii, and A. A. Fotiadi, ‘‘Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior,’’ Results Phys. 6, 59–60 (2016). https://doi.org/10.1016/j.rinp.2016.01.017

    Article  ADS  Google Scholar 

  46. J. Geng, L. Yang, J. Liang, Sh. Liu, and Yo. Zhang, ‘‘Stability in self-injection locking of the DFB laser through a fiber optic resonator,’’ Opt. Commun. 505, 127531 (2022). https://doi.org/10.1016/j.optcom.2021.127531

    Article  Google Scholar 

  47. D. A. Korobko, I. O. Zolotovskii, K. Panajotov, V. V. Spirin, and A. A. Fotiadi, ‘‘Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator,’’ Opt. Communications 405, 253–258 (2017). https://doi.org/10.1016/j.optcom.2017.08.040

    Article  ADS  Google Scholar 

  48. T. W. Hansch and B. Couillaud, ‘‘Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,’’ Opt. Communications 35, 441–444 (1980). https://doi.org/10.1016/0030-4018(80)90069-3

    Article  ADS  Google Scholar 

  49. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, ‘‘Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,’’ Phys. Rev. A 77, 053809 (2008). https://doi.org/10.1103/PhysRevA.77.053809

    Article  ADS  Google Scholar 

  50. M. H. Idjadi and F. Aflatouni, ‘‘Integrated Pound–Drever–Hall laser stabilization system in silicon,’’ Nat Commun. 8, 1209 (2017). https://doi.org/10.1038/s41467-017-01303-y

    Article  ADS  Google Scholar 

  51. D. Derickson, C. Hentschel, and J. Vobis, Fiber Optic Test and Measurement (Prentice Hall PTR, Upper Saddle River, N.J., 1998).

    Google Scholar 

  52. L. B. Mercer, ‘‘1 /f frequency noise effects on self-heterodyne linewidth measurements,’’ IEEE Lightwave Technol. 9, 485–493 (1991). https://doi.org/10.1109/50.76663

    Article  ADS  Google Scholar 

  53. M. Chen, Z. Meng, J. Wang, and W. Chen, ‘‘Ultra-narrow linewidth measurement based on Voigt profile fitting,’’ Opt. Express 23, 6803–6808 (2015). https://doi.org/10.1364/OE.23.006803

    Article  ADS  Google Scholar 

  54. E. Fomiryakov, D. Kharasov, S. Nikitin, O. Nanii, and V. Treshchikov, ‘‘New approach to laser characterization using delayed self-heterodyne interferometry,’’ J. Lightwave Technol. 39, 5191–5196 (2021). https://doi.org/10.1109/JLT.2021.3082263

    Article  ADS  Google Scholar 

  55. Zh. Ou, X. Bao, Ya. Li, B. Saxena, and L. Chen, ‘‘Ultranarrow linewidth Brillouin fiber laser,’’ IEEE Photonics Technol. Lett. 26, 2058–2061 (2014). https://doi.org/10.1109/LPT.2014.2346783

    Article  ADS  Google Scholar 

  56. I. S. Panyaev, P. A. Itrin, D. A. Korobko, and A. A. Fotiadi, ‘‘Self-trapping of frequency and stabilization of a narrowband generation of a semiconductor DFB laser in a circuit with external cavity on fiber with preservation of polarization,’’ in X Int. Workshop on Fiber Lasers, Novosibirsk, 2022, pp. 184–185.

  57. A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors, Series in Fiber Optic Sensors (CRC Press, Boca Raton, Fla., 2017). https://doi.org/10.1201/9781315119014

  58. Y. Lu, T. Zhu, L. Chen, and X. Bao, ‘‘Distributed vibration sensor based on coherent detection of phase-OTDR,’’ J. Lightwave Technol. 28, 3243–3249 (2010).

    ADS  Google Scholar 

  59. F. Peng, H. Wu, X.-H. Jia, Yu.-J. Rao, Z.-N. Wang, and Zh.-P. Peng, ‘‘Ultra-long high-sensitivity \(\Phi\)-OTDR for high spatial resolution intrusion detection of pipelines,’’ Opt. Express 22, 13804–13810 (2014). https://doi.org/10.1364/OE.22.013804

    Article  ADS  Google Scholar 

  60. B. G. Gorshkov, K. Yüksel, A. A. Fotiadi, M. Wuilpart, D. A. Korobko, A. A. Zhirnov, K. V. Stepanov, A. T. Turov, Yu. A. Konstantinov, and I. A. Lobach, ‘‘Scientific applications of distributed acoustic sensing: State-of-the-art review and perspective,’’ Sensors 22, 1033 (2022). https://doi.org/10.3390/s22031033

    Article  ADS  Google Scholar 

  61. A. V. Faustov, A. V. Gusarov, P. Megret, M. Wuilpart, A. V. Zhukov, S. G. Novikov, V. V. Svetukhin, and A. A. Fotiadi, ‘‘The use of optical frequency-domain reflectometry in remote distributed measurements of the \(\gamma\)-radiation dose,’’ Tech. Phys. Lett. 41, 414–417 (2015). 10.1134/S1063785015050053

    Article  ADS  Google Scholar 

  62. A. V. Faustov, A. V. Gusarov, P. Mégret, M. Wuilpart, A. V. Zhukov, S. G. Novikov, V. V. Svetukhin, and A. A. Fotiadi, ‘‘Application of phosphate doped fibers for OFDR dosimetry,’’ Results Phys. 6, 86–87 (2016). https://doi.org/10.1016/j.rinp.2016.02.001

    Article  ADS  Google Scholar 

  63. L. Rossi, D. Marini, F. Bastianini, and G. Bolognini, ‘‘Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications,’’ Opt. Express 27, 29448–29459 (2019). https://doi.org/10.1364/OE.27.029448

    Article  ADS  Google Scholar 

  64. D. Marini, M. Iuliano, F. Bastianini, and G. Bolognini, ‘‘BOTDA sensing employing a modified Brillouin fiber laser probe source,’’ J. Lightwave Technol. 36, 1131–1137 (2018). https://doi.org/10.1109/JLT.2017.2772326

    Article  ADS  Google Scholar 

  65. L. Rossi, F. Bastianini, and G. Bolognini, ‘‘Study of injection-locked stabilized, short cavity Brillouin ring laser source design for fiber sensing applications,’’ J. Eur. Opt. Soc. Rapid Publ. 18, 5 (2022). https://doi.org/10.1051/jeos/2022005

    Article  ADS  Google Scholar 

  66. M. A. Soto, ‘‘Distributed Brillouin sensing: Time-domain techniques,’’ in Handbook of Optical Fibers (Springer, Singapore, 2018), pp. 1663–1753. https://doi.org/10.1007/978-981-10-7087-7_7

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-12-00457P) and Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fotiadi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotiadi, A.A., Korobko, D.A. & Zolotovskii, I.O. Brillouin Lasers and Sensors: Trends and Possibilities. Optoelectron.Instrument.Proc. 59, 66–76 (2023). https://doi.org/10.3103/S8756699023010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023010065

Keywords:

Navigation