Skip to main content
Log in

Raman Generation of PS Pulses at λ= 3.9 μm in a Hollow-Core Revolver Fiber

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Generation of picosecond mid-infrared pulses in Raman gas fiber lasers is studied. Efficient Raman generation of picosecond pulses at a wavelength of 3.9 \(\mu\)m is realized for the first time using a hollow-core revolver fiber filled with a mixture of molecular deuterium and hydrogen as an active medium. The pulse duration is 4.6 ps, and the pulse energy is 10 \(\mu\)J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, ‘‘Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,’’ Opt. Lett. 30, 964–966 (2005). https://doi.org/10.1364/OL.30.000964

    Article  ADS  Google Scholar 

  2. M. Chambonneau, D. Grojo, O. Tokel, F. Ömer Ilday, S. Tzortzakis, and S. Nolte, ‘‘In-volume laser direct writing of silicon—Challenges and opportunities,’’ Laser Photonics Rev. 15, 2100140 (2021). https://doi.org/10.1002/lpor.202100140

    Article  ADS  Google Scholar 

  3. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, ‘‘Multi-watt mid-IR femtosecond polycrystalline Cr\({}^{2+}\):ZnS and Cr\({}^{2+}\):ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 \(\mu\)m,’’ Opt. Express 24, 1616–1623 (2016). https://doi.org/10.1364/OE.24.001616

    Article  ADS  Google Scholar 

  4. E. Slobodchikov, L. R. Chieffo, and K. F. Wall, ‘‘High peak power ultrafast Cr:ZnSe oscillator and power amplifier,’’ Proc. SPIE 9726, 972603 (2016). https://doi.org/10.1117/12.2212793

    Article  Google Scholar 

  5. N. Tolstik, E. Sorokin, and I. T. Sorokina, ‘‘Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,’’ Opt. Express 22, 5564–5571 (2014). https://doi.org/10.1364/OE.22.005564

    Article  ADS  Google Scholar 

  6. N. Nagl, S. Gröbmeyer, V. Pervak, F. Krausz, O. Pronin, and K. F. Mak, ‘‘Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator,’’ Opt. Express 27, 24445–24454 (2019). https://doi.org/10.1364/OE.27.024445

    Article  ADS  Google Scholar 

  7. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, ‘‘Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,’’ Opt. Mater. Express 7, 2636–2650 (2017). https://doi.org/10.1364/OME.7.002636

    Article  ADS  Google Scholar 

  8. S. Vasilyev, V. Smolski, J. Peppers, I. Moskalev, M. Mirov, Yu. Barnakov, S. Mirov, and V. Gapontsev, ‘‘Middle-IR frequency comb based on Cr:ZnS laser,’’ Opt. Express 27, 35079–35087 (2019). https://doi.org/10.1364/OE.27.035079

    Article  ADS  Google Scholar 

  9. A. V. Pushkin, E. A. Migal, S. Tokita, Yu. V. Korostelin, and F. V. Potemkin, ‘‘Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 \(\mu\)m,’’ Opt. Lett. 45, 738–741 (2020). https://doi.org/10.1364/OL.384300

    Article  ADS  Google Scholar 

  10. G. Andriukaitis, T. Balčiunas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-Ch. Chen, M. M. Murnane, and H. C. Kapteyn, ‘‘90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,’’ Opt. Lett. 36, 2755–2757 (2011). https://doi.org/10.1364/OL.36.002755

    Article  ADS  Google Scholar 

  11. S. Wandel, M.-W. Lin, Ya. Yin, G. Xu, and I. Jovanovic, ‘‘Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP\({}_{2}\),’’ Opt. Express 24, 5287–5299 (2016). https://doi.org/10.1364/OE.24.005287

    Article  ADS  Google Scholar 

  12. B. N. Nyushkov, A. V. Ivanenko, and S. V. Smirnov, ‘‘Control of the regimes and parameters of lasing in mode-locked fiber lasers: Opportunities and prospects,’’ Optoelectron., Instrum. Data Process. 57, 569–583 (2021). https://doi.org/10.3103/S8756699021060091

    Article  ADS  Google Scholar 

  13. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, ‘‘Femtosecond fiber lasers reach the mid-infrared,’’ Optica 2, 623–626 (2015). https://doi.org/10.1364/OPTICA.2.000623

    Article  ADS  Google Scholar 

  14. M. R. Majewski, R. I. Woodward, and S. D. Jackson, ‘‘Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback,’’ Opt. Lett. 44, 1698–1701 (2019). https://doi.org/10.1364/OL.44.001698

    Article  ADS  Google Scholar 

  15. S. Duval, J.-Ch. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallee, ‘‘Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 \(\mu\)m,’’ Opt. Lett. 41, 5294–5297 (2016). https://doi.org/10.1364/OL.41.005294

    Article  ADS  Google Scholar 

  16. M. F. Churbanov, B. I. Denker, B. I. Galagan, V. V. Koltashev, V. G. Plotnichenko, M. V. Sukhanov, S. E. Sverchkov, and A. P. Velmuzhov, ‘‘Comparison of 4.5–6 \(\mu\)m luminescent and lasing properties of rare earth dopants in chalcogenide glasses,’’ J. Lumin. 245, 118756 (2022). https://doi.org/10.1016/j.jlumin.2022.118756

    Article  Google Scholar 

  17. T. Fuji and Yu. Nomura, ‘‘Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,’’ Appl. Sci. 2013, 122–138 (2013). https://doi.org/10.3390/app3010122

    Article  Google Scholar 

  18. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, ‘‘Compressing \(\mu\)J-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,’’ Opt. Lett. 40, 1238–1241 (2015). https://doi.org/10.1364/OL.40.001238

    Article  ADS  Google Scholar 

  19. A. I. Adamu, Md. S. Habib, Ch. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and Ch. Markos, ‘‘Deep-UV to mid-IR supercontinuum generation driven by mid-IR ultrashort pulses in a gas-filled hollow-core fiber,’’ Sci. Rep. 9, 4446 (2019). https://doi.org/10.1038/s41598-019-39302-2

    Article  ADS  Google Scholar 

  20. A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, Ch. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, ‘‘Hollow-core optical fiber gas lasers (HOFGLAS): A review,’’ Opt. Mater. Express 2, 948–961 (2012). https://doi.org/10.1364/OME.2.000948

    Article  ADS  Google Scholar 

  21. A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, ‘‘Mid-IR hollow-core silica fibre Raman lasers,’’ Quantum Electron. 47, 1078–1082 (2017). https://doi.org/10.1070/QEL16548

    Article  ADS  Google Scholar 

  22. D. Hanna, D. Pointer, and D. Pratt, ‘‘Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,’’ IEEE J. Quantum Electron. 22, 332–336 (1986). https://doi.org/10.1109/JQE.1986.1072945

    Article  ADS  Google Scholar 

  23. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, ‘‘Theory of Stokes pulse shapes in transient stimulated Raman scattering,’’ Phys. Rev. A 2, 60–72 (1970). https://doi.org/10.1103/PhysRevA.2.60

    Article  ADS  Google Scholar 

  24. C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, ‘‘Efficient compression of femtosecond pulses by stimulated Raman scattering,’’ Appl. Phys. B 59, 471–473 (1994). https://doi.org/10.1007/BF01081070

    Article  ADS  Google Scholar 

  25. A. V. Konyashchenko, L. L. Losev, and S. Yu. Tenyakov, ‘‘Raman frequency shifter for laser pulses shorter than 100 fs,’’ Opt. Express 15, 11855–11859 (2007). https://doi.org/10.1364/OE.15.011855

    Article  ADS  Google Scholar 

  26. N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Yu. Tenyakov, V. Ya. Molchanov, S. I. Chizhikov, and K. B. Yushkov, ‘‘40-fs hydrogen Raman laser,’’ Quantum Electron. 45, 1101–1104 (2015). https://doi.org/10.1070/QE2015v045n12ABEH015906

    Article  ADS  Google Scholar 

  27. C. Vicario, M. Shalaby, A. Konyashchenko, L. Losev, and Ch. P. Hauri, ‘‘High-power femtosecond Raman frequency shifter,’’ Opt. Lett. 41, 4719–4722 (2016). https://doi.org/10.1364/OL.41.004719

    Article  ADS  Google Scholar 

  28. A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev and V. S. Pazyuk, ‘‘Minimum possible laser pulse duration for SRS,’’ Quantum Electron. 47, 593 (2017). https://doi.org/10.1070/QEL16404

    Article  ADS  Google Scholar 

  29. A. V. Konyashchenko, L. L. Losev, and V. S. Pazyuk, ‘‘Femtosecond Raman frequency shifter–pulse compressor,’’ Opt. Lett. 44, 1646–1649 (2019). https://doi.org/10.1364/OL.44.001646

    Article  ADS  Google Scholar 

  30. N. V. Didenko, A. V. Konyashchenko, and L. L. Losev, ‘‘Decreasing the amplitude of macroscopic quantum fluctuations in the case of transient SRS,’’ Quantum Electron. 50, 834–837 (2020). https://doi.org/10.1070/QEL17307

    Article  ADS  Google Scholar 

  31. A. V. Gladyshev, M. S. Astapovich, Yu. P. Yatsenko, A. F. Kosolapov, A. G. Okhrimchuk, and I. A. Bufetov, ‘‘SRS generation of femtosecond pulses in a methane-filled revolver hollow-core optical fibre,’’ Quantum Electron. 49, 1089–1092 (2019). https://doi.org/10.1070/QEL17155

    Article  ADS  Google Scholar 

  32. D. Kergoustin, F. Amrani, B. Debord, F. Gérôme, and F. Benabid, ‘‘Infrared ultra-short pulses generation using stimulated Raman scattering in gas-filled HC-PCF,’’ in Proc. of the Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, 2019 (IEEE, 2019), p. cd_3_5. https://doi.org/10.1109/CLEOE-EQEC.2019.8872648

  33. S. Loranger, Ph. St. J. Russell, and D. Novoa, ‘‘Sub-40 fs pulses at 1.8 \(\mu\)m and MHz repetition rates by chirp-assisted Raman scattering in hydrogen-filled hollow-core fiber,’’ J. Opt. Soc. Am. B 37, 3550–3556 (2020). https://doi.org/10.1364/JOSAB.402179

    Article  ADS  Google Scholar 

  34. A. Gladyshev, Yu. Yatsenko, A. Kolyadin, V. Kompanets, and I. Bufetov, ‘‘Mid-infrared 10-\(\mu\)J-level sub-picosecond pulse generation via stimulated Raman scattering in a gas-filled revolver fiber,’’ Opt. Mater. Express 10, 3081–3089 (2020). https://doi.org/10.1364/OME.411364

    Article  ADS  Google Scholar 

  35. Yu. P. Yatsenko, A. V. Gladyshev, and I. A. Bufetov, ‘‘Mid-IR supercontinuum generation initiated by two-cascade stimulated Raman scattering in D2-filled revolver fibre,’’ Quantu Electron. 51, 1068–1075 (2021). https://doi.org/10.1070/QEL17664

    Article  ADS  Google Scholar 

  36. A. Gladyshev, Yu. Yatsenko, A. Kolyadin, and I. Bufetov, ‘‘Visible to mid-infrared supercontinuum initiated by stimulated Raman scattering of 1.03 \(\mu\)m ultrashort pulses in a gas-filled silica fiber,’’ Photonics 9, 997 (2022). https://doi.org/10.3390/photonics9120997

    Article  Google Scholar 

  37. I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, ‘‘Revolver hollow core optical fibers,’’ Fibers 6, 39 (2018). https://doi.org/10.3390/fib6020039

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00361.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gladyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladyshev, A.V., Dubrovsky, D.S., Zhuravleva, E.E. et al. Raman Generation of PS Pulses at λ= 3.9 μm in a Hollow-Core Revolver Fiber. Optoelectron.Instrument.Proc. 59, 10–17 (2023). https://doi.org/10.3103/S8756699023010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023010089

Keywords:

Navigation