Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 8, 2013

Influence of cutting parameters, tool coatings and friction on the process heat in cutting processes and phase transformations in workpiece surface layers∗

Einfluss von Schnittparametern, Werkzeugbeschichtungen und Reibung auf die Zerspantemperaturen und Gefügeumwandlungen in Bauteilrandschichten
  • V. Schulze , J. Michna , F. Zanger , C. Faltin , U. Maas and J. Schneider

Abstract

The surface states and thus the functionality of machined workpieces are influenced by parameters of the process and the cutting tool. Depending on these variables different mechanical and thermal loads lead to changing characteristics of components. This paper presents a 2D-FE-cutting simulation model predicting machining induced phase transformations of workpiece surface layers for the steel 42CrMo4 (AISI 4140) considering detailed friction modeling between tool and workpiece, based on tribological experiments. The cutting simulation model was developed using the commercial software ABAQUS. Friction and phase transformations are implemented using specific user subroutines. The model calculates the process of austenization and the transformed volume fraction of the phases ferrite/perlite, bainite and martensite. Additional thermo dynamical simulations of the heat transfer using the code INSFLA are performed. The simulated temperatures, cutting forces and phase transformations are compared to orthogonal cutting experiments.

Kurzfassung

Bei der Zerspanung beeinflussen Prozess- und Werkzeugparameter die Oberflächenzustände und damit die Funktionalität von Werkstücken. In Abhängigkeit dieser variablen Größen definieren unterschiedliche mechanische und thermische Belastungen die späteren Eigenschaften von Bauteilen. Dieser Beitrag stellt ein 2-D-Spanbildungssimulationsmodell vor, welches zerspanungsbedingte Gefügeumwandlungen der Bauteilrandschicht für den Vergütungsstahl 42CrMo4 abbildet. Dabei wird die Reibung zwischen Werkzeug und Werkstück auf Basis experimenteller Tribologieversuche detailliert modelliert. Die Spanbildungssimulation erfolgt mit der Software ABAQUS. Berechnet werden die Austenitisierung sowie die umgewandelten Volumenanteile von Ferrit/Perlit, Bainit und Martensit. Zur Berücksichtigung des Wärmeübergangs wurden zusätzlich thermodynamische Simulationen mit dem Code INSFLA durchgeführt. Die Validierung erfolgt mit Drehversuchen im orthogonalen Schnitt.


4 (Corresponding author/Kontakt)

Lecture hold (in german language) by Jürgen Michna at the HK2012, 68. HeatTreatmentCongress, 10–12 October 2012, Wiesbaden


References

1. Shaw, M. C.: Metal Cutting Principles. Oxford Sci. Publ., Claredon Press, ORT, 1984Search in Google Scholar

2. Weinert, K.; Cronjäger, L.: Relation between Process Energy and Tool Wear when Turning Hardfacing Alloys. CIRP Ann.: Manufact. Techn.43 (1994) 1, pp. 97100Search in Google Scholar

3. Pabst, R.; Fleischer, J.; Michna, J.: Modelling of the heat input for face-milling processes. CIRP Ann.: Manufact. Techn.59 (2010) 1, pp. 121–124Search in Google Scholar

4. Ezugwu, E. O.; Bonney, J.; Da Silva, R. B.; Çakir, O.: Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int. J. Mach. Tools Manufact.47 (2007) 6, pp. 884–891Search in Google Scholar

5. Guo, Y. B.; Warren, A. W.; Hashimoto, F.: The basic relationships between residual stress, white layer, and fatigue life of hard turned and ground surfaces in rolling contact. CIRP J. Manufact. Sci. Techn.2 (2010) 2, pp. 129134Search in Google Scholar

6. Ezugwu, E. O.; Bonney, J.; Yamane, Y.: An overview of the machinability of aeroengine alloys. J. Mater. Process. Techn.134 (2003), pp. 233–253Search in Google Scholar

7. Umbrello, D.: Analysis of the white layers formed during machining of hardened AISI 52100 steel under dry and cryogenic cooling conditions. Int. J. Adv. Manufact. Techn.64 (2012) 5–8, pp. 633642Search in Google Scholar

8. Davim, P. (Ed.): Surface Integrity in Machining., London, UK, 2010. – ISBN 978-1-184882-873-5Search in Google Scholar

9. M'Saoubi, R.; Outeiro, J. C.; Chandrasekaran, H.; DillonJr., O. W.; Jawahir, I. S.: A review of surface integrity in machining and its impact on functional performance and life of machined products. Int. J. Sust. Manufact.1 (2008) 1/2, pp. 203236Search in Google Scholar

10. Brinksmeier, E.; Gläbe, R.; Klocke, F.; Lucca, D. A.: Process Signatures – an Alternative Approach to Predicting Functional Workpiece Properties. Procedia Engin.19 (2011), pp. 4452Search in Google Scholar

11. Jawahir, I. S.; Brinksmeier, E.; M'Saoubi, R.; Aspinwall, D. K.; Outeiro, J. C.; Meyer, D.; Umbrello, D.; Jayal, A. D.: Surface integrity in material removal processes: Recent advances. CIRP Ann.: Manufact. Techn.60 (2011) 2, pp. 603626Search in Google Scholar

12. Schulze, V.; Michna, J.; Zanger, F.; Pabst, R.: Modeling the process-induced modifications of the microstructure of work piece surface zones in cutting processes. 13th CIRP Conf. on Modeling of Machining Operations, Sintra, Portugal. Adv. Mat. Res. 223 (2011), pp. 371–380Search in Google Scholar

13. Schulze, V.; Michna, J.; Schneider, J.; Gumbsch, P.: Modelling of cutting induced surface phase transformations considering friction effects. Procedia Engin.19 (2011), pp. 331336Search in Google Scholar

14. Ramesh, A.: Prediction of Process-Induced Microstructural Changes and Residual Stresses in Orthogonal Hard Machining. PhD thesis, Georgia Institute of Technology, USA, 2002Search in Google Scholar

15. Ramesh, A.; Melkote, S. N.: Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int. J. Mach. Tools Manufact.48 (2008) 3/4, pp. 402414Search in Google Scholar

16. Griffiths, B. J.: Mechanisms of white layer generation with reference to machining and deformation processes. Trans. ASME: J. Tribol.109 (1987) 3, pp. 525530Search in Google Scholar

17. Koistinen, D. P.; Marburger, R. E.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall.7 (1959), pp. 5960Search in Google Scholar

18. Miokovic, T.; Schulze, V.; Vöhringer, O.; Löhe, D.: Prediction of phase transformations during laser surface hardening of AISI 4140 including the effects of inhomogeneous austenite formation. Mater. Sci. Eng. A435/436A (2006), pp. 547–555Search in Google Scholar

19. Maas, U.: Mathematical modeling of transient combustion processes using detailed reaction mechanisms. PhD thesis, University Heidelberg, Germany, 1988Search in Google Scholar

20. Maas, U.; Warnatz, J.: Ignition processes in hydrogen-oxygen mixtures. Combust. Flame74 (1988) 1, pp. 5369Search in Google Scholar

21. Skrotzki, B.: The course of the volume fraction of martensite vs. temperature function Mx(T). J. Phys. IV (Coll. C4, suppl. J. Phys. III) 1 (1991), pp. 367372Search in Google Scholar

22. Koistinen, D. P.; Marburger, R. E.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall.7 (1959), pp. 5960Search in Google Scholar

23. Mioković, T.; Schulze, V.; Löhe, D.; Vöhringer, O.: Experimentelle Analyse und Modellierung des Kurzzeitumwandlungsverhaltens von Stählen am Beispiel von 42CrMo4. HTM Haerterei-Techn. Mitt.58 (2003), pp. 1–10Search in Google Scholar

24. Schulze, V.; Autenrieth, H.; Deuchert, M.; Weule, H.: Investigation of surface near residual stress states after micro-cutting by finite element simulation. CIRP Ann.: Manufact. Techn.59 (2010) 1, pp. 117–120Search in Google Scholar

25. Weber, M.; Autenrieth, H.; Kotschenreuther, J.; Schulze, V.; Löhe, D.; Gumbsch, P.; Fleischer, J.: Influence of friction and process parameters on the specific cutting force and surface characteristics in micro cutting. Machin. Sci. Techn.12 (2008) 4, pp. 474497Search in Google Scholar

26. Özel, Z.: The influence of friction on finite element simulations of machining. Int. J. Mach. Tools Manufact.46 (2006), pp. 518530Search in Google Scholar

27. Zorev, N. N.: Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. Proc. Int. Prod. Eng. Res. Conf., Sept. 9–12, 1963, Pittsburgh, USA, Shaw, M. C.; Boulger, F. W. (Eds.) ASME, New York, USA, 1963, pp. 4249Search in Google Scholar

28. Usui, E.; Shirakashi, T.: Mechanics of machining -from descriptive to predictive theory. On the art of cutting metals-75 years later. Winter Ann. Meeting Amer. Soc. Mech. Eng., Phoenix, Arizona, USA, Nov. 14–19, 1982, Vol. 7, L. Kops, S. Ramalingam (Eds.). ASME, New York, USA, 1982, pp. 13–35Search in Google Scholar

29. Childs, T. H. C.: Friction modeling in metal cutting. Wear. 260 (2006) 3, pp. 310318Search in Google Scholar

Published Online: 2013-08-08
Published in Print: 2013-02-26

© 2013, Carl Hanser Verlag, München

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.3139/105.110177/html
Scroll to top button