Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Mechanical Material Properties of Polymethylmethacrylate (PMMA) for Medical Applications

Mechanische Materialeigenschaften von Polymethylmethacrylat (PMMA) für medizinische Einsatzmöglichkeiten
  • Thomas Thielen , Stefan Maas , Arno Zuerbes , Danièle Waldmann and Jens Kelm
From the journal Materials Testing

Abstract

Polymethylmethacrylate (PMMA) also known as bone cement is a frequently used material for medical applications. This study investigated the material properties of the bone cement Palacos R. Flexural, tensile, and compression tests on Palacos R, following common standard, revealed typical brittle material behaviour with high compression (83 MPa) by rather low tension stress (35 MPa). No significant difference was measured between dry stored and 37°C saline solution stored specimens regarding tensile, compression and flexural properties. As bone cement can be considered as a visco-elastic material, additional tests under varied strain rates revealed an increasing Young's modulus and ultimate strength of Palacos R with increasing strain rate. To evaluate long-term load-cycling behaviour an S-N curve was determined. The material parameters of Palacos R may help to predict and evaluate failure of bone cement and improve its medical application.

Kurzfassung

Polymethylmethacrylat (PMMA), in der Medizin auch bekannt als Knochenzement, ist ein häufig verwendeter Werkstoff in klinischen Anwendungen. In dieser Arbeit wurden die mechanischen Materialeigen- schaften eines der am häufigsten verwendeten Knochenzemente — Palacos R — untersucht. Biege-, Zug- und Druckprüfungen nach der Kunststoffprüfnorm ergaben hohe Druckfestigkeiten (83MPa) bei eher geringer Zugfestigkeit (35MPa), typisch für einen spröden Werkstoff. Es ergaben sich keine signifikanten Unterschiede in den Festigkeiten bezüglich einer Lagerung in 37°C Ringerlösung, verglichen mit einer trockenen Lagerung. Mit steigender Dehngeschwindigkeit konnte eine Erhöhung des E-Moduls und der Zugfestigkeit beobachtet werden, was typisch für einen viskoelastischen Werkstoff ist. Anhand des Wöhlerversuchs wurde die Schwingfestigkeit des Werkstoffs ermittelt. Die somit gewonnen, mechanischen Materialparameter des Palacos R sollen eine Hilfestellung in der medizinische Verwendbarkeit geben.


Dipl.-Ing. (MSc) Thomas Thielen studied Civil Engineering at the University of Applied Sciences Trier from 2000 to 2004. Since his additional studies for the Master of Science in Civil Engineering’ at the University of Portsmouth, England, in 2005, he is doctoral student at the University of Luxembourg. In co-operation with the Orthopaedic Department of the Saarland University Hospital he investigates and improves the properties of hip interims prostheses (spacers).

Professor Dr.-Ing. Stefan Maas started after high school in 1982 his Mechanical Engineering studies at the University of Kaiserslautern and achieved his doctoral degree in 1991. The gained his professional experience in a small and medium enterprise as development and production engineer and finally as head of the respective department. Since 1999, he is Professor at the University of Luxembourg (previously Institut Supérieur de Technologie) in the fields of Construction, Mechatronics and Rational Energy Usage.

Professor Dr.-Ing. Arno Zuerbes achieved his doctoral degree in 1992 after his Mechanical Engineering studies at the University of Kaiserslautern. From 1992 to 2002 he was development engineer and after this head of testing department in the industrial company BOMAG, Boppard. Since 2002, he is Professor at the University of Luxembourg (previously Institut Supérieur de Technologie) in the fields of Machinery Parts and Measurement Technologies.

Assistant Professor Dr.-Ing. Danièle Waldmann achieved her doctoral degree in 2000 at the University of Kaiserslautern after her studies in the department Solid Building and Building Construction. From 2000 to 2003 she worked at the company Eurobeton S.A. in Luxembourg. Since 2003, she is Assistant Professor at the University of Luxembourg in the fields of Reinforced Concrete, Armored Concrete and Static Structures.

Dr. med. Jens Kelm ist Assistant Medical Doctor at the Orthopaedic Department of the Saarland University Hospital in Homburg/Saar, Germany. His research interests cover the antibiotics deliverance and the anti-microbiological effects of PMMA hip spacers.


References

1 M.Leunig, E.Chosa, M.Speck, R.Ganz: A cement spacer for two-stage revision of infected implants of the hip, International Orthopaedics22 (1998), No. 4, pp. 20921410.1007/s002640050244Search in Google Scholar

2 S.Affatato, A.Mattarozzi, P.Taddei, P.Robotti, R.Soffiatti, A.Sudanese, A.Toni: Investigations on the wear behaviour of the temporary PMMA-based hip Spacer-G, Proc. Inst. Mechanical Engineers 217 (2003), pp. 18Search in Google Scholar

3 M.Baleani, F.Traina, A.Toni: The mechanical behaviour of a pre-formed hip spacer, Hip International13 (2003) 3, pp. 159162Search in Google Scholar

4 C.Schoellner, S.Fuerderer, J-D.Rompe, A.Eckardt: Individual bone cement spacers (IBCS) for septic hip revision – preliminary report, Archives of Orthopaedic and Trauma Surgery123 (2003), pp. 254259Search in Google Scholar

5 V.Carrero, M.Honl: Mechanischer Test eines Knochenzementspacers für die Revisionshüftendoprothetik, DePuy Prüftestbericht, Hamburg (2000)Search in Google Scholar

6 K.-D.Kühn: Bone Cements – Up-to-Date Comparison of Physical and Chemical Properties of Commercial Materials, Springer, Berlin (2000)10.1007/978-3-642-59762-6Search in Google Scholar

7 O.Oest, K.Müller, W.Hupfauer: Die Knochenzemente, Ferdinand Enke Verlag, Stuttgart (1975)Search in Google Scholar

8 G.Lewis: Properties of Acrylic Bone Cement: State of the Art Review, Journal of Biomedical Materials Research38 (1997), pp. 15518210.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-CSearch in Google Scholar

9 P.Eyerer, R.Jin: Influence of mixing technique on some properties of PMMA bone cement, Journal of Biomedical Materials Research20 (1986), pp. 1057109410.1002/jbm.820200802Search in Google Scholar

10 J. P.Davies, D. O.O´Connor, D. W.Burke, W. H.Harris: Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation, Journal of Biomedical Materials Research23 (1989), pp. 37939710.1002/jbm.820230402Search in Google Scholar

11 E. P.Lautenschlager, J. J.Jacobs, G. W.Marshall, Jr., P. R.Meyer: Mechanical Properties of Bone Cements Containing Large Doses of Antibiotic Powders, Journal of Biomedical Materials Research10 (1976), pp. 92993810.1002/jbm.820100610Search in Google Scholar

12 G.Lewis: Fatigue testing and performance of acrylic bone-cement materials: state of the art review, Journal of Biomedical Material Research66B (2003), No. 2003, pp. 45748610.1002/jbm.b.10018Search in Google Scholar

13 U.Soltész, W.Ege: The influence of loading conditions on the lifetimes in fatigue testing of bone cements, Journal of Material Science: Materials in Medicine5 (1994), pp. 65465610.1007/BF00120350Search in Google Scholar

14 ISO 5833: Implants for Surgery-Acrylic Resin Cements – Orthopaedic Application (1992)Search in Google Scholar

15 DIN 53455: Prüfung von Kunststoffen – Zugeigenschaften von KunststoffenSearch in Google Scholar

16 DIN 53454: Prüfung von Kunststoffen – DruckversuchSearch in Google Scholar

17 DIN 53452: Prüfung von Kunststoffen – Bestimmung der BiegeeigenschaftenSearch in Google Scholar

18 S.Saha, S.Pal: Mechanical properties of bone cement: A review, Journal of Biomedical Materials Research18 (1984), pp. 43546210.1002/jbm.820180411Search in Google Scholar

19 J.Richeton, S.Ahzi, K. S.Vecchio, F.C: Jiang, A. Makradi: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, International Journal of Solids and Structures44 (2007), pp. 7938795410.1016/j.ijsolstr.2007.05.018Search in Google Scholar

20 A. J.Lee, R. S.Ling, S.Gheduzzi, J. P.Simon, R. J.Renfro: Factors affecting the mechanical and viscoelastic properties of acrylic bone cement, Journal of Material Science: Materials in Medicine13 (2002), pp. 72373310.1023/A:1016150403665Search in Google Scholar

21 ISO 7206-4: Implants for surgery – Partial and total hip joint prostheses: Determination of endurance properties of stemmed femoral components (2002)Search in Google Scholar

22 S. A.Brown, W. L.Bargar: The influence of temperature and specimen size on the flexural properties of PMMA bone cement, Journal of Biomedical Materials Research18 (1984), pp. 52353610.1002/jbm.820180506Search in Google Scholar PubMed

23 C. I.Vallo: Flexural Strength Distribution of a PMMA-Based Bone Cement, Journal of Biomedical Materials Research Part B: Applied Biomaterials63 (2002) 2, pp. 22623610.1002/jbm.10129Search in Google Scholar PubMed

24 W. R.Murray: Use of antibiotic-containing bone cement, Clinical Orthopaedics190 (1984), pp. 899510.1097/00003086-198411000-00013Search in Google Scholar

25 W. R.Krause, A.Hofmann: Antibiotic impregnated acrylic bone cements: A comparitive study of the mechanical properties, Journal of Bioactive Compatible Polymers4 (1989), pp. 34536210.1177/088391158900400403Search in Google Scholar

26 L. D. T.Topoleski, P.Ducheyne, J. M.Cuckler: The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly (methyl methacrylate) bone cement, Journal of Biomedical Material Research29 (1995), pp. 29930710.1002/jbm.820290304Search in Google Scholar PubMed

27 T. A.Freitag, S. L.Cannon: Fracture Characteristics of Acrylic Bone Cements. II. Fatigue, Journal of Biomedical Material Research11 (1977), pp. 60962410.1002/jbm.820110413Search in Google Scholar PubMed

28 U.Soltész, W.Ege: Influence of mixing conditions on the fatigue behaviour of an acrylic bone cements, 10. Europ. Conf. of Biomaterials, Davos (1993)Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2009-04-01

© 2009, Carl Hanser Verlag, München

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.110029/html
Scroll to top button