Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Cooling conditions for the generation of bulk metallic glasses by droplet deposition

  • Christoph Meyer , Nils Ellendt , Vikas C. Srivastava and Volker Uhlenwinkel

Abstract

The cooling rate during material processing until glass transition rate is the key parameter for the production of bulk metallic glasses. But in the past, little attention has been paid to advanced production techniques such as deposition of molten metal sprays or spray forming, which offer elevated cooling rates. In this work, cooling conditions during spray forming were investigated due to its utmost importance for producing amorphous structures. Spray forming is treated in this work as a three step cooling process consisting of droplet flight phase, splat phase and deposit phase. All cooling steps were simulated for different droplet sizes. The surface temperature of the deposit was found to play an important role in the production of metallic glasses via spray forming. The simulation model can be used to find suitable spray conditions for the generation of bulk metallic glasses.


1 Correspondence address: Dr.-Ing. Volker Uhlenwinkel, University of Bremen, Faculty 4 – Department of Process & Chemical Engineering, Badgasteiner Str. 1–3, 28359 Bremen, Germany, Phone: +49 218 64506, E-mail:

Refrences

[1]A.Inoue: Acta Mater.48 (2000) 279306. 10.1016/S1359-6454(99)00300-6Search in Google Scholar

[2]W.H.Wang, C.Dong, C.H.Shek: Mater. Sci. Eng. R44 (2004) 4589. 10.1016/j.mser.2004.03.001Search in Google Scholar

[3]A.Takeuchi, A.Inoue: Mater. Sci. Eng. A304–306 (2001) 446451.10.1016/S0921-5093(00)01446-5Search in Google Scholar

[4]R.Nowosielski, R.Babilas: JAMME42 (2010) 6672.Search in Google Scholar

[5]A.Inoue, B.L.Shen, C.T.Chang: Acta Mater.52 (2004) 40934099. 10.1016/j.actamat.2004.05.022Search in Google Scholar

[6]M.Stoica, S.Kumar, S.Roth, S.Ram, J.Eckert, G.Vaughan, A.R.Yavari: J. Alloys Compd.483 (2009) 632637. 10.1016/j.jallcom.2007.11.150Search in Google Scholar

[7]M.Stoica, R.Li, A.R.Yavari, G.Vaughan, J.Eckert, N.Van Steenberge, D.R.Romera: J. Alloys Compd.504, Supplement 1 (2010) S123S128. 10.1016/j.jallcom.2010.04.013Search in Google Scholar

[8]K.Hildal, N.Sekido, J.H.Perepezko: Intermetallics14 (2006) 898902. 10.1016/j.intermet.2006.01.036Search in Google Scholar

[9]A.Inoue: Mater. Sci. Eng. A267 (1999) 171183. 10.1016/S0921-5093(99)00089-1Search in Google Scholar

[10]P.Zhang, H.Wei, X.Wei, Z.Long, X.Su: J. Non-Cryst. Solids355 (2009) 21832189. 10.1016/j.jnoncrysol.2009.06.001Search in Google Scholar

[11]P.S.Grant: Prog. Mater Sci.39 (1995) 497545. 10.1016/0079-6425(95)00004-6Search in Google Scholar

[12]K.F.Chang, F.H.Chen, S.K.Fan, C.Y.A.Tsao: Adv. Mat. Res.51 (2008) 5763. 10.4028/www.scientific.net/AMR.51.57Search in Google Scholar

[13]J.C.Huang, J.P.Chu, J.S.C.Jang: Intermetallics17 (2009) 973987. 10.1016/j.intermet.2009.05.004Search in Google Scholar

[14]V.C.Srivastava, K.B.Surreddi, V.Uhlenwinkel, A.Schulz, J.Eckert, H.W.Zoch: Metall. Mater. Trans. A40 (2009) 450461. 10.1007/s11661-008-9737-5Search in Google Scholar

[15]V.Srivastava, K.Surreddi, S.Scudino, M.Schowalter, V.Uhlenwinkel, A.Schulz, A.Rosenauer, H.Zoch, J.Eckert: Trans. Indian Inst. Met.62 (2009) 331335. 10.1007/s12666-009-0074-1Search in Google Scholar

[16]V.C.Srivastava, K.B.Surreddi, S.Scudino, M.Schowalter, V.Uhlenwinkel, A.Schulz, J.Eckert, A.Rosenauer, H.W.Zoch: Mater. Sci. Eng. A527 (2010) 27472758. 10.1016/j.msea.2010.01.057Search in Google Scholar

[17]C.S.Kiminami, W.J.Botta, C.Bolfarini: Materialwiss. Werkstofftech.41 (2010) 513523. 10.1002/mawe.201000637Search in Google Scholar

[18]C.R.M.Afonso, C.Bolfarini, W.J.B.Filho, C.S.Kiminami: Mater. Sci. Eng. A449–451 (2007) 884889.10.1016/j.msea.2006.02.393Search in Google Scholar

[19]S.Kabelac, M.Siemer, J.Ahrendts: Forsch. Ingenieurwes.70 (2005) 4655. 10.1007/s10010-005-0016-ySearch in Google Scholar

[20]F.Richter: Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen, Verlag Stahleisen m.b.H., Duesseldorf (1973).Search in Google Scholar

[21]A.Schneider, V.Uhlenwinkel, H.Harig, K.Bauckhage: Mater. Sci. Eng. A383 (2004) 114121. 10.1016/j.msea.2004.02.038Search in Google Scholar

[22]J.B.Wiskel, H.Henein, E.Maire: Can. Metall. Q41 (2002) 97110.10.1179/cmq.2002.41.1.97Search in Google Scholar

[23]M.E.Ranz, W.R.Marshall: Chem. Eng. Prog.48 (1952) 141146.Search in Google Scholar

[24]A.Schneider: Sprühkompaktieren mit Injektion von Feststoffpartikeln, VDI-Verl. (2005).Search in Google Scholar

[25]U.Fritsching: Spray simulation: modelling and numerical simulation of sprayforming metals, Cambridge Univ. Press (2004). 10.1017/CBO9780511536649Search in Google Scholar

[26]E.J.Lavernia, Y.Wu: Spray atomization and deposition, Wiley (1996).Search in Google Scholar

[27]L.Achelis, V.Uhlenwinkel, R.Ristau, P.Krug: Materialwiss. Werkstofftech.41 (2010) 498503. 10.1002/mawe.201000635Search in Google Scholar

[28]H.Lubanska: J. Metals22 (1970) 4549.Search in Google Scholar

[29]W.Hofmeister, M.Griffith: JOM53 (2001) 3034. 10.1007/s11837-001-0066-zSearch in Google Scholar

[30]L.Achelis, V.Uhlenwinkel: Mater. Sci. Eng. A477 (2008) 1520. 10.1016/j.msea.2007.07.095Search in Google Scholar

[31]N.Ellendt, R.Schmidt, J.Knabe, H.Henein, V.Uhlenwinkel: Mater. Sci. Eng. A383 (2004) 107113. 10.1016/j.msea.2004.02.067Search in Google Scholar

Received: 2011-11-25
Accepted: 2012-5-10
Published Online: 2013-06-11
Published in Print: 2012-09-01

© 2012, Carl Hanser Verlag, Munich

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.110802/html
Scroll to top button