THE IMPACT OF COMPETITIVE CONDITIONS ON AMPLITUDES OF EVENT-RELATED POTENTIALS DURING VERBAL CREATIVE AND NON-CREATIVE TASK PERFORMANCE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Brain activity changes significantly under various social interaction conditions. However, the impact of the context of social interactions on neurophysiological correlates of cognitive and creative activity per se has not been sufficiently addressed. Two polar types of interactions can be distinguished when solving tasks, cooperation or competition. This study was aimed to assess the impact of competitive conditions on amplitudes of event-related potentials (ERPs) when solving creative and non-creative tasks. The subjects (26 male, 18 female) performed two types of tasks as individuals and dyads (male–male, female–female): a creative task to think up an unusual use of an ordinary item and a non-creative task to enumerate items from the proposed categories. In each of the tasks, ERPs were compared during its competitive and individual performance. Competitive conditions led to a decrease in amplitudes of the components P1 and P2, as well as N400 and P600, during both creative and non-creative activity, suggesting the difficulty of finding an answer. The percentage of answers found was also significantly lower under conditions of competitive versus individual task performance. Apparently, a significant portion of resources when performing a task under social interaction conditions is directed toward the assessment of partner’s responses and answers, as manifested in a decrease in the amplitude both of the earlier attention-related ERP components (P1, P2) and the later components related to semantic stimulus processing (N400, P600).

About the authors

Zh. V. Nagornova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: nagornova_zh@mail.ru
Russia, St. Petersburg

N. V. Shemyakina

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: shemyakina_n@mail.ru
Russia, St. Petersburg

References

  1. Shemyakina NV, Nagornova ZV (2021) Neurophysiological characteristics of competition in skills and cooperation in creativity task performance: a review of hyperscanning research. Human Physiology 47: 87. https://doi.org/10.1134/S0362119721010126
  2. Astolfi L, Cincotti F, Mattia D, De Vico Fallani F, Salinari S, Vecchiato G, Toppi J, Wilke C, Doud A, Yuan H, He B, Babiloni F (2010) Imaging the social brain: multi-subjects EEG recordings during the “Chicken’s game”. Annu Int Conf IEEE Eng Med Biol Soc 2010: 1734. https://doi.org/10.1109/IEMBS.2010.5626708
  3. Peng M, Wang X, Chen W, Chen T, Cai M, Sun X, Wang Y (2021) Cooperate or aggress? An opponent’s tendency to cooperate modulates the neural dynamics of interpersonal cooperation. Neuropsychologia 162: 108025. https://doi.org/10.1016/j.neuropsychologia.2021.108025
  4. Cui F, Wang C, Cao Q, Jiao C (2019) Social hierarchies in third-party punishment: A behavioral and ERP study. Biol Psychol 146: 107722. https://doi.org/10.1016/j.biopsycho.2019.107722
  5. Moore M, Katsumi Y, Dolcos S, Dolcos F (2021) Electrophysiological Correlates of Social Decision-making: An EEG Investigation of a Modified Ultimatum Game. J Cogn Neurosci 34: 54–78. https://doi.org/10.1162/jocn_a_01782
  6. Tortosa MI, Lupiáñez J, Ruz M (2013) Race, emotion and trust: an ERP study. Brain Res 1494: 44–55. https://doi.org/10.1016/j.brainres.2012.11.037
  7. Lu K, Qiao X, Hao N (2019) Praising or keeping silent on partner’s ideas: Leading brainstorming in particular ways. Neuropsychologia 124: 19–30. https://doi.org/10.1016/j.neuropsychologia.2019.01.004
  8. Fink A, Grabner RH, Gebauer D, Reishofer G, Koschutnig K, Ebner F (2010) Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. Neuroimage 52: 1687–1695. https://doi.org/10.1016/j.neuroimage.2010.05.072
  9. Xue H, Lu K, Hao N (2018) Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage 172: 527–537. https://doi.org/10.1016/j.neuroimage.2018.02.007
  10. Lu K, Xue H, Nozawa T, Hao N (2019) Cooperation Makes a Group be More Creative. Cereb Cortex 29: 3457–3470. https://doi.org/10.1093/cercor/bhy215
  11. Lu K, Teng J, Hao N (2020) Gender of partner affects the interaction pattern during group creative idea generation. Exp Brain Res 238: 1157–1168. https://doi.org/10.1007/s00221-020-05799-7
  12. Lu K, Yu T, Hao N (2020) Creating while taking turns, the choice to unlocking group creative potential. Neuroimage 219: 117025. https://doi.org/10.1016/j.neuroimage.2020.117025
  13. Lu K, Qiao X, Yun Q, Hao N (2021) Educational diversity and group creativity: Evidence from fNIRS hyperscanning. Neuroimage 243: 118564. https://doi.org/10.1016/j.neuroimage.2021.118564
  14. Mayseless N, Hawthorne G, Reiss AL (2019) Real-life creative problem solving in teams: fNIRS based hyperscanning study. Neuroimage 203: 116161. https://doi.org/10.1016/j.neuroimage.2019.116161
  15. Guilford JP (1967) The Nature of Human Intelligence. New York. McGraw-Hill.
  16. Райгородский ДЯ (редактор-составитель) (2001) Практическая психодиагностика. Методики и тесты. Учебное пособие. Самара. Издательский Дом “БАХРАХ-М”. [Raigorodsky DYa (ed) (2001) Practical psychodiagnostics. Techniques and tests. Tutorial. Samara: BAKHRAKH-M Publishing House. (In Russ)].
  17. Vigário RN (1997) Extraction of ocular artifacts from EEG using independent component analysis. EEG and Clin Neurophysiol 103: 395–404. https://doi.org/10.1016/s0013-4694(97)00042-8
  18. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37: 163–178. https://doi.org/10.1111/1469-8986.3720163
  19. Tereshchenko EP, Ponomarev VA, Kropotov YuD, Müller A (2009) Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and event-related potentials. Hum Physiol 35: 241–247. https://doi.org/10.1134/S0362119709020157
  20. Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24: 95–112.
  21. Fink A, Koschutnig K, Benedek M, Reishofer G, Ischebeck A, Weiss EM, Ebner F (2012) Stimulating creativity via the exposure to other people’s ideas. Hum Brain Mapp 33: 2603–2610. https://doi.org/10.1002/hbm.21387
  22. Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343–361. https://doi.org/10.1016/s0301-0082(98)00011-2
  23. Chica AB, Lasaponara S, Lupiáñez J, Doricchi F, Bartolomeo P (2010) Exogenous attention can capture perceptual consciousness: ERP and behavioural evidence. Neuroimage 51: 1205–1212. https://doi.org/10.1016/j.neuroimage.2010.03.002
  24. Schindler S, Bruchmann M, Gathmann B, Moeck R, Straube T (2021) Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex 136: 14–27. https://doi.org/10.1016/j.cortex.2020.12.011
  25. Cao F, Rickles B, Vu M, Zhu Z, Chan DH, Harris LN, Stafura J, Xu Y, Perfetti CA (2013) Early stage visual-orthographic processes predict long-term retention of word form and meaning: a visual encoding training study. J Neurolinguistics 26: 440–461. https://doi.org/10.1016/j.jneuroling.2013.01.003
  26. Rabovsky M, Sommer W, Abdel Rahman R (2012) Depth of conceptual knowledge modulates visual processes during word reading. J Cogn Neurosci 24: 990–1005. https://doi.org/10.1162/jocn_a_00117
  27. Medvedev SV, Rudas MS, Pakhomov SV, Ivanitskii AM, Il’yuchenok IR, Ivanitskii GA (2003) Mechanisms of Selective Attention during Competitive Discrimination of Visual and Auditory Verbal Information: Positron Emission Tomography and Cortical Evoked Potential Studies. Hum Physiol 29: 694–702. https://doi.org/10.1023/B:HUMP.0000008840.16235.c8
  28. Rigoni D, Polezzi D, Rumiati R, Guarino R, Sartori G (2010) When people matter more than money: an ERPs study. Brain Res Bull 81: 445–452. https://doi.org/10.1016/j.brainresbull.2009.12.003
  29. Kolassa IT, Musial F, Kolassa S, Miltner WH (2006) Event-related potentials when identifying or color-naming threatening schematic stimuli in spider phobic and non-phobic individuals. BMC Psychiatry 6: 38. https://doi.org/10.1186/1471-244X-6-38
  30. Wieser MJ, Moscovitch DA (2015) The Effect of Affective Context on Visuocortical Processing of Neutral Faces in Social Anxiety. Front Psychol 6: 1824. https://doi.org/10.3389/fpsyg.2015.01824
  31. Mercado F, Carretié L, Hinojosa JA, Peñacoba C (2009) Two successive phases in the threat-related attentional response of anxious subjects: neural correlates. Depress Anxiety 26: 1141–1150. https://doi.org/10.1002/da.20608
  32. Thornhill DE, Van Petten C (2012) Lexical versus conceptual anticipation during sentence processing: frontal positivity and N400 ERP components. Int J Psychophysiol 83: 382–392. https://doi.org/10.1016/j.ijpsycho.2011.12.007
  33. Bridger EK, Bader R, Kriukova O, Unger K, Mecklinger A (2012) The FN400 is functionally distinct from the N400. Neuroimage 63: 1334–1342. https://doi.org/10.1016/j.neuroimage.2012.07.047
  34. Stróżak P, Abedzadeh D, Curran T (2016) Separating the FN400 and N400 potentials across recognition memory experiments. Brain Res 1635: 41–60. https://doi.org/10.1016/j.brainres.2016.01.015
  35. Wang X, Ma Q, Wang C (2012) N400 as an index of uncontrolled categorization processing in brand extension. Neurosci Lett 525: 76–81. https://doi.org/10.1016/j.neulet.2012.07.043
  36. Davenport T, Coulson S (2011) Predictability and novelty in literal language comprehension: an ERP study. Brain Res 1418: 70–82. https://doi.org/10.1016/j.brainres.2011.07.039
  37. Rataj K, Przekoracka-Krawczyk A, van der Lubbe RHJ (2018) On understanding creative language: The late positive complex and novel metaphor comprehension. Brain Res 1678: 231–244. https://doi.org/10.1016/j.brainres.2017.10.030
  38. Kröger S, Rutter B, Hill H, Windmann S, Hermann C, Abraham A (2013) An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Res 1527: 189–198.
  39. Abraham A, Rutter B, Hermann C (2021) Conceptual expansion via novel metaphor processing: an ERP replication and extension study examining individual differences in creativity. Brain Lang 221: 105007. https://doi.org/10.1016/j.bandl.2021.105007
  40. Zhang Z, Luo Y, Wang C, Warren CM, Xia Q, Xing Q, Cao B, Lei Y, Li H (2019) Identification and transformation difficulty in problem solving: Electrophysiological evidence from chunk decomposition. Biol Psychol 143: 10–21. https://doi.org/10.1016/j.biopsycho.2019.02.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (543KB)
3.

Download (530KB)

Copyright (c) 2023 Ж.В. Нагорнова, Н.В. Шемякина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies