Tree Contraction, Connected Components, Min-
imum Spanning Trees: a GPU Path to Vertex
Fitting

Raul H. C. Lopes', Ivan D. Reid", Peter R. Hobson"

!Department of Electronic & Computer Engineering, Brunel University London, Kingston Lane,
Uxbridge, UB8 3PH, United Kingdom

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/5

Standard parallel computing operations are considered in the context of algorithms for
solving 3D graph problems which have applications, e.g., in vertex finding in HEP. Ex-
ploiting GPUs for tree-accumulation and graph algorithms is challenging: GPUs offer ex-
treme computational power and high memory-access bandwidth, combined with a model
of fine-grained parallelism perhaps not suiting the irregular distribution of linked repre-
sentations of graph data structures. Achieving data-race free computations may demand
serialization through atomic transactions, inevitably producing poor parallel performance.
A Minimum Spanning Tree algorithm for GPUs is presented, its implementation discussed,
and its efficiency evaluated on GPU and multicore architectures.

1 Introduction

We are concerned with the problem of finding parallel algorithms to compute a Minimum
Spanning Tree for a weighted undirected graph. We introduce a parallel algorithm for computing
minimum spanning trees over weighted undirected graphs.

An undirected graph G is a pair (V, E), where V is a finite nonempty set of vertices and
E is a set of unordered pairs of vertices in V', called the set of edges of G. A path in G is a
sequence of edges eg, e1, ..., e,, with e; and e; 1, for i € {0..n — 1}, sharing exactly one vertex.
A cycle is path eg,eq,...,e,, where eg and e, share one vertex. A graph G is connected
if there is a path between any pair of its vertices. A tree is connected graph containing no
cycles. A spanning tree for a graph G is a tree containing all vertices in G. A spanning
forest for a graph G that is not connected is a set of spanning trees, one for each connected
component of G. A graph G is weighted when a function w assigns weights to each edge of
G. A graph’s weight is the sum of weights of its edges. A Minimum Spanning Tree (MST) of
a graph G is a tree of minimal weight among all spanning trees of G. The concept extends to
that of Minimum Spanning Forest (MSF) of G as a spanning forest of minimum weight.

Throughout this paper we will use n to denote number of vertices in a graph G, and m
to denote its number of edges. An MST in R? can be computed in O(nlgn) using Delaunay
triangulations. However, the work demanded to compute an MST in R¢ is limited from below
by Q(m) when d > 2, see [1]. Even the representation in memory of the edges of a 220 vertices
graph could be a challenge.

30 GPUHEP2014

TREE CONTRACTION, CONNECTED COMPONENTS, MINIMUM SPANNING TREES: A ...

Minimum spanning trees have applications, for example, in computer networks, water supply
networks, and electrical grids. The computation of MSTs is considered a fundamental challenge
in Combinatorial Optimization [2] and is of interest for the HEP community.

In the next sections, we discuss first sequential algorithms for computing connected and
spanning trees, and the difficulties involved in parallelizing them. Then we present an algorithm
for computing minimum spanning trees on GPU architectures and discuss its performance on
both GPU and multi-core architectures.

2 Sequential Algorithms

Minimum spanning tree computations make use of the following property to choose edges from
the underlying graph to add to its MST. See [3] for a proof of its soundness.

Cut property: The lightest edge connecting any nonempty subset X of V(G) to V(G) — X
belongs to MSF(G).

The Bortuivka algorithm is historically the first and possibly most general MSF algorithm.
It uses the cut property to maintain the following invariant: each tree in the forest is an MST
for the vertices in it, and each vertex in the initial graph belongs to exactly one tree. It starts
with a set of forests, each containing exactly one vertex from the given graph G. Bortuvka’s
is essentially a non-deterministic algorithm in which, at any time, all lightest edges that can
expand any of its trees can be added. It’s important to notice, however, that each edge addition
joins two trees and this must be reflected in the data structures used in its implementation.
Also, its non-deterministic nature appeals to parallel implementations, but introduces possible
data-race conditions.

Most theoretically efficient MST algorithms use Bortivka functions, as for example [4], and
the deterministic algorithm given by [1] and [5]. These algorithms, however, seem to lack
efficient practical implementations or parallel versions. The most successful implementations
of sequential MST algorithms, the Prim-Dijkstra and Kruskal algorithms evaluated in [6],
can be seen as specializations of the Boruvka algorithm and they also maintain an invariant,
see [7], where at any moment in the computation the edges already selected by the algorithm
form an MST of the subgraph in question and any new edge added satisfies the cut property.
In particular the Kruskal algorithm [3] is a sequential version of the Bortivka algorithm where
edges are processed in increasing order of weights.

In the next section, we discuss the challenges found in parallelizing the Bortuvka algorithm
and the fundamental requirements for parallelization of a minimum spanning tree computation.

3 Parallel Algorithms

The nondeterministic nature of Boriivka’s algorithm clearly invites the introduction of asyn-
chronous parallelism in its implementation. We would have an algorithm that performs a
sequence of parallel steps, where each parallel step joins all possible pairs of trees, using the
lightest edges connecting them. However, care must be taken in that: more than two trees may
be joined in the same parallel step; given two trees tg and ¢; joined in a parallel step, all edges
connecting vertices in ¢y to vertices in ¢; must be discarded.

Those problems result from the fact that many trees may be expanded simultaneously. The
Prim-Dijkstra algorithm expands exactly one tree and thus avoids complications of performing
simultaneous unions of vertices and edges by being strictly sequential. The Kruskal algorithm

GPUHEP2014 31

RAUL H. C. LoPES, IVAN D. REID, PETER R. HOBSON

excludes the possibility of joining more than two trees simultaneously by processing the edges
in increasing order of weight. It still keeps track of more than one tree being expanded at any
time, but each expansion and join is serialized. Its first obvious disadvantage is in processing the
edges in increasing weight order, which demands ordering all edges before the real construction
of the tree starts, which can be very expensive or even prohibitive when processing, for example,
Euclidean graphs where the number of edges can approach n?. A graph with 22° vertices might
demand memory to maintain close to 24° edges, maybe two to four terabytes just to store edge
weights.

The Kruskal algorithm, or any other derived from the Bortuivka algorithm, must still take
care of the joining of trees and the union of sets of respective vertices and edges. In practice
this is performed using efficient implementations of the disjoint-set data structure, see [§]. A
disjoint-set data structure offers fast union of two sets by labeling the elements of two sets
with a common identifier that defines that new common set that they belong to. It offers fast
set membership tests by performing a fast search from the vertex to the label of the structure
representing the set it belongs to. In a sequential implementation this is achieving by making
vertices the leaves of trees where each node points to its parent, with the root of the tree
pointing to itself and being taken as the label of the tree. Set union is trivially performed by
making the root of one tree to point to the root of another tree. However, this is an operation
that must be synchronized. Synchronization may also be needed if the search for a tree’s root
is performed concurrently with a join operation.

Nondeterminism has been forcefully defended by authors like Dijkstra [9] and Lamport [10]
as a powerful tool in the design of computer algorithms and concurrent systems. More re-
cently, Steele [11] has made a strong point for the integration of asynchronous computations
in synchronous parallel algorithms, given that asynchronous programs tend to be more flexible
and efficient when processing conditionals. In addition many authors have pointed out asyn-
chronous and non-deterministic parallelism as the root of success of many programs based on
the MapReduce model [12].

An ideal implementation of Bortuivka’s algorithm would start as many asynchronous threads
as possible, each expanding a different minimum spanning tree. Synchronization, however,
would be needed, for example, if a tree ty must be joined to a tree ¢; while, simultaneously, ¢,
is being joined to t2 and ts is being joined with ty. That sort of synchronism is a fundamental
requirement of any parallel implementation of Boruvka’s algorithm.

The objective of this paper is to present a GPU algorithm. Its design must take into ac-
count that GPU architectures perform at their peak when running in SIMD (Single-Instruction-
Multiple-Data) fashion. Performance is lost when atomic transactions, or conditions that send
threads into different paths, are present.

Correctness in parallel and concurrent computation can only be achieved by ensuring non-
interference between threads. Blelloch et ali [13], see also [14], have argued that being data-race
free is the minimum requirement in order to achieve correctness in the presence of concurrency.
However, being data-race free at the cost of atomic operations may be too costly for SIMD
computing. Internal determinism is the solution they introduce to obtain a fast multi-core
algorithms by transforming the code to ensure that internal steps are always deterministic.
Internal determinism, however, should not be introduced through the introduction of expensive
atomic transactions or nesting of conditional structures and code. Possibly the fundamental
mandate for SIMD (and GPU) architectures must be functional determinism, where the absence
of side effects between threads is a guarantee of non-interference and absence of the need for
atomic constructions as semaphores or even transactional memory. This should be achieved by

32 GPUHEP2014

TREE CONTRACTION, CONNECTED COMPONENTS, MINIMUM SPANNING TREES: A ...

program transformations to perform parallel computation through the composition of efficient
GPU parallel constructions.

In the next section we present a parallelization of the Kruskal algorithm and discuss its
performance on both GPU and multi-core architectures.

4 A Parallelization of the Kruskal Algorithm and its Per-
formance Evaluation

We introduce a parallel version of the Kruskal algorithm. The algorithm is composed of two
phases: parallel sorting of the edges of the given graph, followed by the construction of the
minimum spanning tree. The sorting phase is performed by a standard parallel sorting function
and is not described here. We describe the construction phase by introducing first its objects
and the morphisms that transform them. The objects used by the algorithm follow.

e A set of weighted edges. Represented by a vector of triples (v, v, w), where u and v are
the edge vertices and w is its associated weight, it is ordered by a parallel sorting function
in the first phase of the algorithm.

e An ordered sequence of prioritized edges. Represented by a vector of triples (i,u,v), u
and v being vertices and ¢ the order of the edge (u,v) in the sorted set, it is generated by
a parallel zip of the index ¢ and an edge from the sequence of ordered edges fused with a
parallel map to form triple.

o A set of vertex reservations. Represented by a vector that at any moment assigns a vertex
to an edge, where reserved[u] = i, states the fact that edge ¢ owns the vertex w.

o A set of delayed edges. A vector of booleans indexed by edges, which determines if, in a
given parallel step, the addition of an edge to the tree will be suspended and delayed to
be performed in a future step.

e A disjoint set of trees. Represented by a vector SV of vertices to trees, it assigns to a
vertex v the partial minimum spanning tree it belongs, in the sense that if SV[u] equals
to v then v if the parent of u in disjoint-set structure, and they belong to same tree. We
assume a function root(u) which returns the root of v in SV.

The edges are processed in blocks of p edges. An edge (u,v) is considered for processing and
consequent addition to a tree only if its vertices do not belong to the same tree, i.e., root(u)
and root(v) are different. Each block is processed by the sequence of parallel transformations
described below.

e Parallel reservation. reserve(i,u,v). It is implemented by a parallel loop, where each
parallel step takes a triple (i,u,v) from the sequence of prioritized edges described above
and tries to mark u and v as reserved by ¢. It is important to notice that a data-race
condition arises when two parallel steps try to acquire the same vertex for different edges.

e Parallel delay. A parallel loop where each step takes a prioritized edge (i,u,v) and the
reserved set and marks the edge i as delayed if neither u nor v is reserved for 1.

GPUHEP2014 33

RAUL H. C. LoPES, IVAN D. REID, PETER R. HOBSON

e Parallel commit. Another parallel loop where each step commits a prioritized edge by
linking v to u when v is reserved by %, or linking u to v, when u is reserved by 7. Linking
u to v consists in assigning v to SV [ul.

e Parallel disjoint set compression. Using a pointer jumping technique as described in the
rake and compress algorithm of Shiloach and Vishkin [15] applied to the disjoint set
structure implemented by SV, it compresses the structure to make each leaf to point
directly to its respective root.

Table 1 shows times for tests with an imple-
mentation of the algorithm on a machine with an [Problem | 1 HT | 4 HT | 8 HT | GPU
Intel Xeon E5620 and an Nwvidia Tesla C2070. [gort 1.34 111 091 | 0.078
Ubuntu 14.04 was the operating system and nvce, | Uniform | 6.31 4.05 4.12 0.74
the compiler. Each line shows the time to solve a | praw 7.90 591 6.05 1.94
problem using 1, 4, 8 threads, and the time on the
GPU. The first line shows the problem of sorting Table 1: Time (seconds) comparing sorting
225 single-precision floating-point numbers from floats and MST construction
a uniform distribution. It is important to notice
that the Intel Xeon E5620 has four cores, that can be used to run 2 hyperthreads (HT) each.
The GPU sort produces close to 11.7 times acceleration compared to sorting on eight threads.
In both cases, the tests used the standard sort function provided by the NVidia thrust library.
The second line shows the times to build a minimum spanning tree with 22° uniformly
distributed vertices, and 222 edges on an Euclidean three dimensional space. The GPU gives
around 5.56 times acceleration compared with running on 8 threads. The last line shows tests
for random graphs with 22° nodes and 2%* edges with a power law distribution, based on [16].

5 Conclusions and Further Work

The technical literature generally presents the construction of minimum spanning forests as
an outstanding combinatorial optimization problem, that is challenging enough to be used in
several benchmarks as shown in the recent [13]. Even if many theoretical parallel algorithms
can be found, only a few seem to show effective implementations. Badder et ali [17] have studied
parallelizations both based on the Borivka algorithm and on the Prim-Dijkstra algorithm. The
paper [17] shows some gain from the range of two to four processors, but the absence of numbers
for one core tests doesn’t allow for a clear evaluation of the acceleration obtained. Chong [18]
presents a multi-core asynchronous parallel algorithm relying on atomic transactions, that would
hardly be realizable on a GPU architecture. The algorithm in [19] seems to be an exception
in targeting a GPU architecture. It is based on the Prim-Dijkstra algorithm and achieves less
than 3 times acceleration when compared with a single core algorithm. Belloch [13] presents
an algorithm for multi-core architectures that introduces the idea of vertex reservation used in
this paper. It seems, however, to depend on atomic transactions to access a disjoint-set data
structure. The algorithm presented in this paper borrows from Blelloch and from Steele’s ideas
on combining asynchronous and synchronous parallelism.

A clear limitation of any algorithm derived from Kruskal is the need to use an explicit
representation of the edges. We have previously presented a parallel algorithm for k-d-tree
construction [20] that could be used to avoid the huge allocation of space when a quadratic
number of edges is present in an Euclidean graph.

34 GPUHEP2014

TREE CONTRACTION, CONNECTED COMPONENTS, MINIMUM SPANNING TREES: A ...

6

Acknowledgments

Lopes, Reid and Hobson are members of the GridPP collaboration and wish to acknowledge
funding from the Science and Technology Facilities Council, UK.

References

Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackerman type complexity. Journal of
the ACM, 47(6):1028-1047, 2000.

William J. Cook, William H. Cunningham, and William R. Pulleybank. Combinatorial Optimization.
Willey-Blackwell, 1997.

Thomas Cormen, C. Leiserson, Ron Rivest, and Clifford Stein. Introduction to Algorithms. MIT Press,
2009.

D. R. Karger, Phillip N. Klein, and Robert E. Tarjan. A randomized liner-time algorithm to find minimum
spanning trees. Journal of the ACM, 42(2):321-328, 1995.

Seth Petit and Vijaya Ramachandran. An optimal minimum spanning algorithm. Journal of the ACM,
49(1):16-34, 2002.

Bernard M. E. Moret and Henry D. Shapiro. An empirical assessment of algorithms for constructing a
minimum spanning tree. DIMACS Monographs 15, pages 99-117, 1994.

David Gries and Fred B. Schneider. A Logical Approach to Discrete Mathematics. Springer, 2010.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

Edsger E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison Wesley, 2002.

Guy L. Steele. Making asynchronous parallelism safe for the world. Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 218-231, 1990.

Derek G. Murray and Steven Hand. Non-deterministic-parallelism considered useful. Proceedings of the
18th USENIX conference on Hot topics in operating systems, pages 19-19, 2011.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally deterministic parallel
algorithms can be fast. Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, pages 181-192, 2012.

Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel programming must be
deterministic by default. In Proceedings of the First USENIX Conference on Hot Topics in Parallelism,
HotPar’09, pages 4-4, Berkeley, CA, USA, 2009. USENIX Association.

Y. Shiloach and Uzi Vishkin. An o(log n) parallel connectivity algorithm. Journal of Algorithms, 3(1):57-67,
1982.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for graph mining.
In Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida,
USA, April 22-24, 2004, pages 442446, 2004.

David A. Bader and Guojing Cong. Fast shared-memory algorithms for computing the minimum spanning
forest of sparse graphs. J. Parallel Distrib. Comput., 66(11):1366-1378, November 2006.

Ka Wong Chong, Yijie Han, and Tak Wah Lam. Concurrent threads and optimal parallel minimum spanning
trees algorithm. Journal of the ACM, 48(2):297-323, March 2001.

Sadegh Nobari, Thanh-Tung Cao, Panagiotis Karras, and Stéphane Bressan. Scalable parallel minimum
spanning forest computation. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 205—214, New York, NY, USA, 2012. ACM.

Raul H C Lopes, Ivan D Reid, and Peter R Hobson. A well-separated pairs decomposition algorithm for
k-d trees implemented on multi-core architectures. Journal of Physics: Conference Series, 513(052011),
2014.

GPUHEP2014 35

