biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 65:111-117, 2021 | DOI: 10.32615/bp.2020.139

Tolerance of Arabidopsis thaliana plants overexpressing grapevine VaSTS1 or VaSTS7 genes to cold, heat, drought, salinity, and ultraviolet irradiation

Z.V. OGNEVA1, O.A. ALEYNOVA1, A.R. SUPRUN1, 2, Y.A. KARETIN3, A.S. DUBROVINA1, K.V. KISELEV1, *
1 Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, Vladivostok, 690022, Russia,
2 Department of Biodiversity, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia,
3 Laboratory of Embryology, National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690059, Russia

Stilbene synthases (STS) are plant enzymes that are responsible for the biosynthesis of stilbenes, which are plant phenolic compounds with valuable biological properties. Stilbenes also play important roles in plant tolerance to biotic and abiotic stresses. Therefore, plants that overexpress STS genes can be more resistant to various stresses. This paper investigated the effects of STS gene overexpression in Arabidopsis thaliana (L.) Heynh. Columbia-0 plants on stilbene content and tolerance to the following abiotic stresses: low and high temperatures, salinity, drought, and ultraviolet irradiation (UV-B and UV-C). We used VaSTS1 and VaSTS7 genes from grapevine (Vitis amurensis Rupr.) expressed under the double cauliflower mosaic virus 35S (CaMV35S) promoter. This study firstly demonstrated that overexpression of the VaSTS1 and VaSTS7 genes in A. thaliana plants considerably increased plant tolerance to UV-B and UV-C, while the tolerance to the low and high temperatures, salinity, and drought was not affected. We showed that the highest trans-piceid and trans-resveratrol total content was in ST1 A. thaliana plants that overexpressed the VaSTS1 gene in the range 8.28 - 22.66 µg g-1(f.m.). ST7 plants that overexpressed the VaSTS7 gene showed only trans-resveratrol at 0.02 - 0.08 µg g-1(f.m). Stilbene content and UV tolerance in transgenic A. thaliana plants correlated with STS transgene expression. STS expression, UV tolerance, and stilbene content was higher in VaSTS1 transgenic plants compared with that in VaSTS7 transgenic plants.

Keywords: glucosyltransferase, peroxidase, piceid, resveratrol, stilbene synthase, viniferin.

Received: July 5, 2020; Revised: September 17, 2020; Accepted: September 18, 2020; Published online: May 17, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
OGNEVA, Z.V., ALEYNOVA, O.A., SUPRUN, A.R., KARETIN, Y.A., DUBROVINA, A.S., & KISELEV, K.V. (2021). Tolerance of Arabidopsis thaliana plants overexpressing grapevine VaSTS1 or VaSTS7 genes to cold, heat, drought, salinity, and ultraviolet irradiation. Biologia plantarum65, Article 111-117. https://doi.org/10.32615/bp.2020.139
Download citation

Supplementary files

Download file6527_OgnevaSuppl.pdf

File size: 173.38 kB

References

  1. Aleynova, O.A., Grigorchuk, V.P., Dubrovina, A.S., Rybin, V.G., Kiselev, K.V.: Stilbene accumulation in cell cultures of Vitis amurensis Rupr. overexpressing VaSTS1, VaSTS2, and VaSTS7 genes. - Plant Cell Tissue Organ Cult. 125: 329-339, 2016. Go to original source...
  2. Buer, C.S., Muday, G.K.: The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. - Plant Cell 16: 1191-1205, 2004. Go to original source...
  3. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., Scheible, W.R.: Genome-wide identification and testing of superios reference genes for trancript normalization in Arabidopsis. - Plant Physiol. 139: 5-17, 2005. Go to original source...
  4. Chong, J., Poutaraud, A., Hugueney, P.: Metabolism and roles of stilbenes in plants. - Plant Sci. 117: 143-155, 2009. Go to original source...
  5. Duan, D., Halter, D., Baltenweck, R., Tisch, C., Tröster, V., Kortekamp, A., Hugueney, P., Nick, P.: Genetic diversity of stilbene metabolism in Vitis sylvestris. - J. exp. Bot. 66: 3243-3257, 2015. Go to original source...
  6. Dubrovina, A.S., Kiselev, K.V.: Regulation of stilbene biosynthesis in plants. - Planta 346: 597-623, 2017. Go to original source...
  7. Dubrovina, A.S., Kiselev, K.V., Khristenko, V.S., Aleynova, O.A.: The calcium-dependent protein kinase gene VaCPK29 is involved in grapevine responses to heat and osmotic stresses. - Plant Growth Regul. 82:79-89, 2017. Go to original source...
  8. Dubrovina, A.S., Aleynova, O.A., Suprun, A.R., Ogneva, Z.V., Kiselev, K.V.: Transgene suppression in plants by foliar application of in vitro-synthesized small interfering RNAs. - Appl. Microbiol. Biotechnol. 104: 2125-2135, 2020. Go to original source...
  9. Giorcelli, A., Sparvoli, F., Mattivi, F., Tava, A., Balestrazzi, A., Vrhovsek, U., Calligari, P., Bollini, R., Confalonieri, M.: Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. - Transgenic Res. 13: 203-214, 2004. Go to original source...
  10. Hanhineva, K., Kokko, H., Siljanen, H., Rogachev, I., Aharoni, A., Karenlampi, S.O.: Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria × ananassa). - J. exp. Bot. 60: 2093-2106, 2009. Go to original source...
  11. He, X.C., Xue, F.Y., Zhang, L.L., Guo, H.L., Ma, L.Q., Yang, M.F.: Overexpressing fusion proteins of 4-coumaroyl-CoA ligase (4CL) and stilbene synthase (STS) in tobacco plants leading to resveratrol accumulation and improved stress tolerance. - Plant Biotechnol. Rep. 12: 295-302, 2018. Go to original source...
  12. Jeandet, P., Delaunois, B., Conreux, A., Donnez, D., Nuzzo, V., Cordelier, S., Clément, C., Courot, E.: Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. - Biofactors 36: 331-341, 2010. Go to original source...
  13. Kiselev, K.V.: Perspectives for production and application of resveratrol. - Appl. Microbiol. Biotechnol. 90: 417-425, 2011. Go to original source...
  14. Kiselev, K.V., Aleynova, O.A.: Influence of overexpression of stilbene synthase VaSTS7 gene on resveratrol production in transgenic cell cultures of grape Vitis amurensis Rupr. - Appl. Biochem. Microbiol. 52: 56-60, 2016. Go to original source...
  15. Kiselev, K.V., Dubrovina, A.S., Shumakova, O.A., Karetin, Y.A., Manyakhin, A.Y.: Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. - Plant Cell Rep. 32: 431-442, 2013. Go to original source...
  16. Kiselev, K.V., Dubrovina, A.S., Tyunin, A.P.: The methylation status of plant genomic DNA influences PCR efficiency. - J. Plant Physiol. 175: 59-67, 2015. Go to original source...
  17. Kiselev, K.V., Dubrovina, A.S., Veselova, M.V., Bulgakov, V.P., Fedoreyev, S.A., Zhuravlev, Y.N.: The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. - J. Biotechnol. 128: 681-692, 2007. Go to original source...
  18. Kiselev, K.V., Ogneva, Z.V., Dubrovina, A.S., Nityagovsky, N.N., Suprun, A.R.: Somatic mutations, DNA methylation, and expression of DNA repair genes in Arabidopsis thaliana treated with 5-azacytidine. - Biol. Plant. 63: 398-404, 2019a. Go to original source...
  19. Kiselev, K.V., Ogneva, Z.V., Suprun, A.R., Grigorchuk, V.P., Dubrovina, A.S.: Action of ultraviolet-C radiation and p-coumaric acid on stilbene accumulation and expression of stilbene biosynthesis-related genes in the grapevine Vitis amurensis Rupr. - Acta Physiol. Plant. 41: 28, 2019b. Go to original source...
  20. Kobayashi, S., Ding, C.K., Nakamura, Y., Nakajima, I., Matsumoto, R.: Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). - Plant Cell Rep. 19: 904-910, 2000. Go to original source...
  21. Laavola, M., Nieminen, R., Leppänen, T., Eckerman, C., Holmbom, B., Moilanen, E.: Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo. - J. Agr. Food Chem. 63: 3445-3453, 2015. Go to original source...
  22. Langcake, P., Pryce, R.J.: A new class of phytoalexins from grapevines. - Experientia 33: 151-152, 1977. Go to original source...
  23. Liu, Z., Zhuang, C., Sheng, S., Shao, L., Zhao, W., Zhao, S.: Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. - Plant Cell Rep. 30: 2027-2036, 2011. Go to original source...
  24. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. - Methods 25: 402-408, 2001. Go to original source...
  25. Lo, C., Le, Blanc, J.C.Y., Yu, C.K.Y., Sze, K.H., Ng, D.C.M., Chu, I.K.: Detection, characterization, and quantification of resveratrol glycosides in transgenic Arabidopsis over-expressing a sorghum stilbene synthase gene by liquid chromatography/tandem mass spectrometry. - Rapid Commun. Mass. Spectrom. 21: 4101-4108, 2007. Go to original source...
  26. Luo, Z., Guo, H., Yang, Y., Yang, M., Ma, L., Wang, Y.: Heterologous overexpression of resveratrol synthase (PcPKS5) gene enhances antifungal and mite aversion by resveratrol accumulation. - Eur. J. Plant Pathol. 142: 547-556, 2015. Go to original source...
  27. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  28. Nawkar, G.M., Maibam, P., Park, J.H., Sahi, V.P., Lee, S.Y., Kang, C.H.: UV-induced cell death in plants. - Int. J. mol. Sci. 14: 1608-1628, 2013. Go to original source...
  29. Ogneva, Z.V., Dubrovina, A.S., Kiselev, K.V.: Age-associated alterations in DNA methylation and expression of methyltransferase and demethylase genes in Arabidopsis thaliana. - Biol. Plant. 60: 628-634, 2016. Go to original source...
  30. Ogneva, Z.V., Suprun, A.R., Dubrovina, A.S., Kiselev, K.V.: The effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. - Plant Protect. Sci. 55: 73-80, 2019. Go to original source...
  31. Rajeevkumar, S., Anunanthini, P., Sathishkumar, R.: Epigenetic silencing in transgenic plants. - Front. Plant Sci. 6: 693, 2015. Go to original source...
  32. Shankar, S., Nall, D., Tang, S.N., Meeker, D., Passarini, J., Sharma, J., Srivastava, R.K.: Resveratrol inhibits pancreatic cancer stem cell characteristics in human and kras (G12D) transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. - PLoS ONE 6: e16530, 2011. Go to original source...
  33. Shumakova, O.A., Manyakhin, A.Y., Kiselev, K.V.: Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. - Appl. Biochem. Biotechnol. 165: 1427-1436, 2011. Go to original source...
  34. Suwalsky, M., Villena, F., Gallardo, M.J.: In vitro protective effects of resveratrol against oxidative damage in human erythrocytes. - Biochim. biophys. Acta 1848: 76-82, 2015. Go to original source...
  35. Tyunin, A.P., Kiselev, K.V.: Alternations in VaSTS gene cytosine methylation and t-resveratrol production in response to UV-C irradiation in Vitis amurensis Rupr. cells. - Plant Cell Tissue Organ Cult. 124: 33-45, 2016. Go to original source...
  36. Weiskirchen, S., Weiskirchen R.: Resveratrol: how much wine do you have to drink to stay healthy? - Adv. Nutr. 7: 706-718, 2016. Go to original source...
  37. Yu, C.K.Y., Lam, C.N.W., Springob, K., Schmidt, J., Chu, I.K., Lo, C.: Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. - Plant Cell Physiol. 47: 1017-1021, 2006. Go to original source...
  38. Zhang, X.R., Henriques, R., Lin, S.S., Niu, Q.W., Chua, N.H.: Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. - Nature Protocols 1: 641-646, 2006. Go to original source...