Photosynthetica 2020, 58(SI):214-227 | DOI: 10.32615/ps.2019.144

Special issue in honour of Prof. Reto J. Strasser – Chlorophyll fluorescence, leaf gas exchange, and genomic analysis of chromosome segment substitution rice lines exposed to drought stress

K. HUNGSAPRUG1, T. KOJONNA1, M. SAMLEEPAN1, C. PUNCHKHON1, W. UT-KHAO2, B. KOSITSUP1, W. KASETTRANUN1, J.L. SIANGLIW3, T. TOOJINDA3, L. COMAI5, K. PLAIMAS6, S. CHADCHAWAN1
1 Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
2 Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand, and Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
3 National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, 12120 Pathum Thani, Thailand
5 Department of Plant Biology, University of California, Davis, CA, USA Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand6

This research aims to evaluate the photosynthesis-related parameters in rice chromosome segment substitution lines (CSSL), containing drought-tolerant region from DH212 in a Khao Dawk Mali105 genetic background. Screening at seedling stage indicated that CSSL4 was more tolerant to drought stress than KDML105 with the higher maximal quantum yield of PSII photochemistry. After withholding water, the decline in light-saturated net photosynthetic rate due to drought stress occurred simultaneously with the decrease in electron transport rate and effective quantum yield of PSII photochemistry values, suggesting that stomatal changes affect light-saturated net photosynthetic rate (PNmax) during the initial drought response. KDML105 rice showed the highest level of electron transport rate/PNmax ratio. This suggested that KDML105 has the lowest ability to use reducing power in photosynthesis process under drought stress conditions. Loci containing single nucleotide polymorphisms between CSSL4 and KDML105 were subjected for co-expression network analysis with 0.99 correlation. The co-expression between calmodulin-stimulated calcium-ATPase and C2H2 zinc finger protein was detected. This locus may contribute to the maintenance ability of photosynthesis process under drought stress conditions.

Additional key words: Additional key words: field capacity; maximum efficiency of PSII; Oryza; photosynthesis performance index; water stress.

Received: May 20, 2019; Accepted: October 25, 2019; Prepublished online: November 15, 2019; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
HUNGSAPRUG, K., KOJONNA, T., SAMLEEPAN, M., PUNCHKHON, C., UT-KHAO, W., KOSITSUP, B., ... CHADCHAWAN, S. (2020). Special issue in honour of Prof. Reto J. Strasser – Chlorophyll fluorescence, leaf gas exchange, and genomic analysis of chromosome segment substitution rice lines exposed to drought stress. Photosynthetica58(SPECIAL ISSUE), 214-227. doi: 10.32615/ps.2019.144
Download citation

Supplementary files

Download fileHungsaprug 2293 supplement.docx

File size: 173.3 kB

References

  1. Awasthi J.P., Chandra T., Mishra S. et al.: Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1-12-3. - Plant Physiol. Bioch. 137: 62-74, 2019. Go to original source...
  2. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  3. Beena R., Thandapani V., Chandrababu R.: Physio-morpho-logical and biochemical characterization of selected recombinant inbred lines of rice for drought resistance. - Indian J. Plant Physi. 17: 189-193, 2012.
  4. Bindea G., Mlecnik B., Hackl H. et al.: ClueGo: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. - Bioinformatics 25: 1091-1093, 2009. Go to original source...
  5. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  6. Bouman B.A.M., Tuong T.P.: Field water management to save water and increase its productivity in irrigated low land rice. - Agr. Water Manage. 49: 11-30, 2001. Go to original source...
  7. Cattivelli L., Rizza F., Badeck F.W. et al.: Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. - Field Crop. Res. 105: 1-14, 2008. Go to original source...
  8. Caulet R.P., Gradinariu G., Iurea D., Morariu A.: Influence of furostanol glycosides treatments on strawberry (Fragaria × ananassa Duch.) growth and photosynthetic characteristics under drought condition. - Sci. Hortic.-Amsterdam 169: 179-188, 2014. Go to original source...
  9. Chaves M.M.: Effects of water deficits on carbon assimilation. -J. Exp. Bot. 42: 1-16, 1991. Go to original source...
  10. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  11. Chutimanukul P., Kositsup B., Plaimas K. et al.: Photosynthetic responses and identification of salt tolerance genes in a chromosome segment substitution line of 'Khao Dawk Mali 105' rice. - Environ. Exp. Bot. 155: 497-508, 2018. Go to original source...
  12. Comstock J.P.: Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. - J. Exp. Bot. 53: 195-200, 2002. Go to original source...
  13. Cornic G., Le Gouallec J.L., Briantais J.M., Hodges M.: Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostema repens (Lour.) Hall f.). - Planta 177: 84-90, 1989. Go to original source...
  14. Cregg B.M., Duck M.W., Rios C.M., Rowe D.B.: Chlorophyll fluorescence and needle chlorophyll concentration of fir (Abies sp.) seedling in response to pH. - HortScience 39: 1121-1125, 2004. Go to original source...
  15. Da Matta F.M., Maestri M., Barros R.S.: Photosynthetic performance of two coffee species under drought. - Photosynthetica 34: 257-264, 1997. Go to original source...
  16. Davies W.J., Zhang J.: Root signals and the regulation of growth and development of plants in drying soil. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Go to original source...
  17. Dias M.C., Brüggemann W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. - Photosynthetica 48: 96-102, 2010. Go to original source...
  18. Faseela P., Puthur J.T.: Chlorophyll a fluorescence changes in response to short and long term high light stress in rice seedlings. - Indian J. Plant Physi. 22: 30-33, 2017. Go to original source...
  19. Flexas J., Diaz-Espejo A., Galmés J. et al.: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. - Plant Cell Environ. 30: 1284-1298, 2007. Go to original source...
  20. Flexas J., Medrano H.: Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. -Ann. Bot.-London 89: 183-189, 2002. Go to original source...
  21. Geissler N., Hussin S., El-Far M.M.M., Koyro H.W.: Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. - Environ. Exp. Bot. 118: 67-77, 2015. Go to original source...
  22. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  23. Hemamalini G.S., Shashidhar H.E., Hittalmani S.: Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). - Euphytica 112: 69-78, 2000. Go to original source...
  24. IRRI (International Rice Research Institute): Leaf drying. Annual Report for 1996. Pp. 418. IRRI 1996.
  25. Iseki K., Homma K., Shiraiwa T. et al.: The effects of cross-tolerance to oxidative stress and drought stress on rice dry matter production under aerobic conditions. - Field Crop. Res. 163: 18-23, 2014. Go to original source...
  26. Jena K.K., Mackill D.J.: Molecular markers and their use in marker-assisted selection in rice. - Crop Sci. 48: 1266-1276, 2008. Go to original source...
  27. Kaiser W.M., Kaiser G., Prachuab P.K. et al.: Photosynthesis under osmotic stress: Inhibition of photosynthesis of intact chloroplasts, protoplasts, and leaf slices at high osmotic potentials. - Planta 153: 416-422, 1981. Go to original source...
  28. Kanjoo V., Jearakongman S., Punyawaew K. et al.: Co-location of quantitative trait loci for drought and salinity tolerance in rice. - Thai J. Genet. 4: 126-138, 2011.
  29. Kanjoo V., Punyawaew K., Siangliw J.L. et al.: Evaluation of agronomic traits in chromosome segment substitution lines of KDML105 containing drought tolerance QTL under drought stress. - Rice Sci. 19: 117-124, 2012. Go to original source...
  30. Kawahara Y., de la Bastide M., Hamilton J.P. et al.: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. - Rice 6: 4-13, 2013. Go to original source...
  31. Khrueasan N., Plaimas K., Kositsup B. et al.: Gene co-expression network of predicted salt tolerance region on chromosome 1 in rice (Oryza sativa L.). - Thai J. Genet. 6: 30-35, 2013.
  32. Kositsup B., Jarungwongsatean N., Khrueasan N. et al.: Evaluation of some drought stress tolerance phenotypes in chromosome substitution lines (CSSL) of Khao Dok Mali 105 rice (Oryza sativa L. 'Khao Dok Mali 105') at vegetative stage. - Thai J. Genet. 1: 270-275, 2013.
  33. Lal S., Gulyani V., Khurana P.: Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). - Transgenic Res. 17: 651-663, 2008. Go to original source...
  34. Lanceras J.C., Pantuwan G., Jongdee B. et al.: Quantitative trait loci associated with drought tolerance at reproductive stage in rice. - Plant Physiol. 135: 384-399, 2004. Go to original source...
  35. Li D., Li C., Sun H. et al.: Photosynthetic and chlorophyll fluorescence regulation of upland cotton (Gossypium hirsutum L.) under drought conditions. - Plant Omics J. 5: 432-437, 2012.
  36. Li H., Durbin R.: Fast and accurate short read alignment with Burrows-Wheeler transform. - Bioinformatics 25: 1754-1760, 2009. Go to original source...
  37. Li H., Handsaker B., Wysoker A. et al: The Sequence Alignment/Map (SAM) format and SAMtools. - Bioinformatics 25: 2078-2079, 2009. Go to original source...
  38. Li R., Guo P., Baum M. et al.: Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. - Agr. Sci. China 5: 751-757, 2006. Go to original source...
  39. Lima J.M., Nath M., Dokku P. et al.: Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. - AoB Plants 7: plv023, 2015. Go to original source...
  40. Lin B.B.: Resilience in agriculture through crop diversifica- tion: adaptive management for environmental change. - Bioscience 61: 183-193, 2011. Go to original source...
  41. Lotia S., Montojo J., Dong Y. et al.: Cytoscape app store. - Bioinformatics 29: 1350-1351, 2013. Go to original source...
  42. Lu H.J., Jessup K.E., Xue Q.W., Cherry R.H.: Morphological and physiological responses of St. Augustine grass cultivars to different levels of soil moisture. - J. Crop Improv. 27: 291-308, 2013. Go to original source...
  43. Medrano H., Escalona J.M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. - Ann. Bot.-London 89: 895-905, 2002. Go to original source...
  44. Méthy M., Damesin C., Rambal S.: Drought and photosystem II activity in two Mediterranean oaks. - Ann. For. Sci. 53: 255-262, 1996. Go to original source...
  45. Mirshad P.P., Puthur J.T.: Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum Retz.). - Environ. Monit. Assess. 188: 425, 2016. Go to original source...
  46. O'Toole J.C., Moya T.B.: Genotypic variation in maintenance of leaf water potential in rice. - Crop Sci. 18: 873-876, 1978. Go to original source...
  47. Paknejad F., Nasri M., Moghadam H.T. et al.: Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. - J. Biol. Sci. 7: 841-847, 2007. Go to original source...
  48. Palliyath S., Puthur J.T.: The modulation of various physio-chemical changes in Bruguiera cylindrica (L.) Blume affected by high concentrations of NaCl. - Acta Physiol. Plant. 40: 160, 2018. Go to original source...
  49. Peeva V., Cornic G.: Leaf photosynthesis of Haberlea rhodopensis before and during drought. - Environ. Exp. Bot. 65: 310-318, 2009. Go to original source...
  50. Peguero-Pina J.J., Sancho-Knapik D., Morales F. et al.: Differential photosynthetic performance and photoprotec-tion mechanisms of three Mediterranean evergreen oaks under severe drought stress. - Funct. Plant Biol. 36: 453-462, 2009. Go to original source...
  51. Peltzer D., Dreyer E., Polle A.: Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. - Plant Physiol. Bioch. 40: 141-150, 2002. Go to original source...
  52. Polthanee A., Promkhumbut A., Bamrungrai J.: Drought impact on rice production and farmers' adaptation strategies in northeast Thailand. - IJERD 5: 45-52, 2014.
  53. Renou J.L., Gerbaud A., Just D., André M.: Differing substomatal and chloroplastic CO2 concentrations in water-stressed wheat. - Planta 182: 415-419, 1990. Go to original source...
  54. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Ecological Studies. Pp. 49-70. Springer, New York 1994. Go to original source...
  55. Sharkey T.D., Badger M.R.: Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells. - Planta 156: 199-206, 1982. Go to original source...
  56. Souza R.P., Machado E.C., Silva J.A.B. et al.: Photo-synthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. - Environ. Exp. Bot. 51: 45-56, 2004. Go to original source...
  57. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluo-rescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 443-480. Taylor & Francis, London 2000.
  58. Subrahmanyam D., Subash N., Haris A., Sikka A.K.: Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. - Photosynthetica 44: 125-129, 2006. Go to original source...
  59. Tardieu F., Davies W.J.: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. - Plant Cell Environ. 16: 341-349, 1993. Go to original source...
  60. Utkhao W., Yingjajaval S.: Changes in leaf gas exchange and biomass of Eucalyptus camaldulensis in response to increasing drought stress induced by polyethylene glycol. - Trees 29: 1581-1592, 2015. Go to original source...
  61. Veihmeyer F.J., Hendrickson, A.H.: The moisture equivalent as a measure of the field capacity of soils. - Soil Sci. 32: 181-194, 1931. Go to original source...
  62. Wang K., Ding Y., Cai C. et al.: The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. - Physiol. Plantarum 165: 690-700, 2019. Go to original source...
  63. Xia L., Zou D., Sang J. et al.: Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice. - J. Genet. Genomics 44: 235-241, 2017. Go to original source...
  64. Yin C.Y., Berninger F., Li C.Y.: Photosynthetic responses of Populus przewalski subjected to drought stress. - Photosynthetica 44: 62-68, 2006. Go to original source...
  65. Yuan X., Huang P., Wang R. et al.: A zinc finger transcriptional repressor confers pleiotropic effects on rice growth and drought tolerance by down-regulating stress-responsive genes. - Plant Cell Physiol. 59: 2129-2142, 2018. Go to original source...