Photosynthetica 2023, 61(3):275-284 | DOI: 10.32615/ps.2023.016

Changes of dorsoventral asymmetry and anoxygenic photosynthesis in response of Chelidonium majus leaves to the SiO2 nanoparticle treatment

V. LYSENKO1, Y. GUO2, V.D. RAJPUT1, E. CHALENKO1, O. YADRONOVA1, T. ZARUBA1, T. VARDUNY1, E. KIRICHENKO1
Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia1
2 Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Wuxi, China

Natural SiO2 nanoparticles (SiO2-NPs) are widely distributed in the environment, and at the same time, synthetic SiO2-NP may be applied in agriculture. Evaluations of physiological responses to SiO2-NPs treatment of plants are controversial. They are often performed at adaxial leaf sides whereas NPs permeate leaf tissues through stomata located at the abaxial leaf side in the majority of bifacial plants. We measured coefficients of the functional dorsoventral asymmetry of NPs-stressed Chelidonium majus leaves, S, by values of the CO2 assimilation rate (SPN), dark respiration (SR), maximal and operating quantum yields of photosystem II (SFv/Fm, SFv'/Fm'; using PAM-fluorometry), and oxygen coefficients of photosynthesis (SΨO2; using photoacoustics). The results indicated that SPN and SΨO2 were significantly influenced by SiO2-NPs treatment, since PN and ΨO2 were declining more markedly when the light was directed to the abaxial side of leaves compared to the adaxial side. Overall, SiO2-NPs-induced stress increased 'anoxygenity' of photosynthesis.

Additional key words: CO2 assimilation kinetics; cyclic electron transport around PSII; energy storage; photobaric signal; photothermal signal; transpiration kinetics.

Received: December 18, 2022; Revised: March 10, 2023; Accepted: April 6, 2023; Prepublished online: May 12, 2023; Published: October 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LYSENKO, V., GUO, Y., RAJPUT, V.D., CHALENKO, E., YADRONOVA, O., ZARUBA, T., VARDUNY, T., & KIRICHENKO, E. (2023). Changes of dorsoventral asymmetry and anoxygenic photosynthesis in response of Chelidonium majus leaves to the SiO2 nanoparticle treatment. Photosynthetica61(3), 275-284. doi: 10.32615/ps.2023.016
Download citation

References

  1. Alam P., Arshad M., Al-Kheraif A.A. et al.: Silicon nanoparticle-induced regulation of carbohydrate metabolism, photosynthesis, and ROS homeostasis in Solanum lycopersicum subjected to salinity stress. - ACS Omega 7: 31834-31844, 2022. Go to original source...
  2. Allakhverdiev S.I., Klimov V.V., Carpentier R.: Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. - Biochemistry 36: 4149-4154, 1997. Go to original source...
  3. Ballikaya P., Mateos J.M., Brunner I. et al.: Detection of silver nanoparticles inside leaf of European beech (Fagus sylvatica L.). - Front. Environ. Sci. 10: 1107005, 2023. Go to original source...
  4. Barja P.R., Mansanares A.M., Da Silva E.C. et al.: A photosynthetic induction in Eucalyptus urograndis seedlings and cuttings measured by an open photoacoustic cell. - Photosynthetica 39: 489-495, 2001. Go to original source...
  5. Barkataki M.P., Singh T.: Plant-nanoparticle interactions: Mechanisms, effects, and approaches. - In: Verma S.K., Das A.K. (ed.): Comprehensive Analytical Chemistry. Vol. 87. Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability. Pp. 55-83. Elsevier, Amsterdam 2019. Go to original source...
  6. Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 2nd Edition. Pp. 312. Wiley Blackwell, Chichester 2014.
  7. Buschmann C.: Thermal dissipation related to chlorophyll fluorescence and photosynthesis. - Bulg. J. Plant Physiol. 25: 77-88, 1999.
  8. Curien G., Flori S., Villanova V. et al.: The water to water cycles in microalgae. - Plant Cell Physiol. 57: 1354-1363, 2016. Go to original source...
  9. Du J., Liu B., Zhao T. et al.: Silica nanoparticles protect rice against biotic and abiotic stresses. - J. Nanobiotechnol. 20: 197, 2022. Go to original source...
  10. El-Shetehy M., Moradi A., Maceroni M. et al.: Silica nanoparticles enhance disease resistance in Arabidopsis plants. - Nat. Nanotechnol. 16: 344-353, 2021. Go to original source...
  11. Fraire-Velázquez S., Balderas-Hernández V.E.: Abiotic stress in plants and metabolic responses. - In: Vahdati K., Leslie C. (ed): Abiotic Stress: Plant Responses and Applications in Agriculture. Pp. 25-48. InTech Open Science, New York 2013. Go to original source...
  12. Gordiichuk P., Coleman S., Zhang G. et al.: Augmenting the living plant mesophyll into a photonic capacitor. - Sci. Adv. 7: eabe9733, 2021. Go to original source...
  13. Hagemeier M., Leuschner C.: Leaf and crown optical properties of five early-, mid- and late-successional temperate tree species and their relation to sapling light demand. - Forests 10: 925, 2019. Go to original source...
  14. Hassan H., Alatawi A., Abdulmajeed A. et al.: Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. - Horticulturae 7: 16, 2021. Go to original source...
  15. Jankoviæ N.Z., Plata D.L.: Engineered nanomaterials in the context of global element cycles. - Environ. Sci.-Nano 6: 2697-2711, 2019. Go to original source...
  16. Johnson G.N.: Physiology of PSI cyclic electron transport in higher plants. - BBA-Bioenergetics 1807: 384-389, 2011. Go to original source...
  17. Lazár D., Niu Y., Nedbal L.: Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. - J. Exp. Bot. 73: 6380-6393, 2022. Go to original source...
  18. Le V.N., Rui Y., Gui X. et al.: Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. - J. Nanobiotechnol. 12: 50, 2014. Go to original source...
  19. Li S., Liu J., Wang Y. et al.: Comparative physiological and metabolomic analyses revealed that foliar spraying with zinc oxide and silica nanoparticles modulates metabolite profiles in cucumber (Cucumis sativus L.). - Food Energ. Secur. 10: e269, 2021. Go to original source...
  20. Liu Y., Wang S., Wang Z. et al.: TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. - Nanomaterials 8: 95, 2018. Go to original source...
  21. Lysenko V., Guo Y., Chugueva O.: Cyclic electron transport around photosystem II: mechanisms and methods of study. - Am. J. Plant Physiol. 12: 1-9, 2017. Go to original source...
  22. Lysenko V., Rajput V.D., Singh R.K. et al.: Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. - Physiol. Mol. Biol. Pla. 28: 2041-2056, 2022. Go to original source...
  23. Lysenko V., Varduny T.: High levels of anoxygenic photosynthesis revealed by dual-frequency Fourier photoacoustics in Ailanthus altissima leaves. - Funct. Plant Biol. 49: 573-586, 2022. Go to original source...
  24. Malkin S.: The photoacoustic method in photosynthesis - monitoring and analysis of phenomena which lead to pressure changes following light excitation. - In: Amesz J., Hoff A.J. (ed.): Biophysical Techniques in Photosynthesis. Pp. 191-206. Springer, Dordrecht 1996. Go to original source...
  25. Malkin S.: Attenuation of the photobaric-photoacoustic signal in leaves by oxygen-consuming processes. - Israel J. Chem. 38: 261-268, 1998. Go to original source...
  26. Manzo S., Buono S., Rametta G. et al.: The diverse toxic effect of SiO₂ and TiO₂ nanoparticles toward the marine microalgae Dunaliella tertiolecta. - Environ. Sci. Pollut. R. 22: 15941-15951, 2015. Go to original source...
  27. Munekage Y., Shikanai T.: Cyclic electron transport through photosystem I. - Plant Biotechnol. 22: 361-369, 2005. Go to original source...
  28. Nawrocki W.J., Tourasse N.J., Taly A. et al.: The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. - Annu. Rev. Plant Biol. 66: 49-74, 2015. Go to original source...
  29. Oguchi R., Onoda Y., Terashima I., Tholen D.: Leaf anatomy and function: including bioenergy and related processes. - In: Adams III W.W., Terashima I. (ed.): The Leaf: A Platform for Performing Photosynthesis. Pp. 97-139. Springer, Cham 2018. Go to original source...
  30. Parveen A., Siddiqui Z.A.: Impact of silicon dioxide nanoparticles on growth, photosynthetic pigments, proline, activities of defense enzymes and some bacterial and fungal pathogens of tomato. - Vegetos 35: 83-93, 2022. Go to original source...
  31. Prasil О., Kolber Z., Berry J.A., Falkowski P.G.: Cyclic electron flow around photosystem II in vivo. - Photosynth. Res. 48: 395-410, 1996.
  32. Pshibytko N.L., Kalitukho L.N., Kabashnikova L.F.: Effects of high temperature and water deficit on photosystem II in Hordeum vulgare leaves of various ages. - Russ. J. Plant Physiol. 50: 44-51, 2003. Go to original source...
  33. Rajput V., Minkina T., Feizi M. et al.: Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. - Biology 10: 791, 2021. Go to original source...
  34. Rastogi А., Tripathi D.K., Yadav S. et al.: Application of silicon nanoparticles in agriculture. - 3 Biotech 9: 90, 2019. Go to original source...
  35. Rochaix J.-D.: Regulation of photosynthetic electron transport. - BBA-Bioenergetics 1807: 375-383, 2011. Go to original source...
  36. Rumeau D., Peltier G., Cournac L.: Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. - Plant Cell Environ. 30: 1041-1051, 2007. Go to original source...
  37. Schreiber U.: Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. - In: Papageorgiou G.C., Govindje G. (ed.): Chlorophyll a fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  38. Shariati F., Shirazi M.A.: Effect of SiO2 nanoparticles on chlorophyll, carotenoid and growth of green micro-algae Dunaliella salina. - Nanomed. Res. J. 4: 164-175, 2019.
  39. Slomberg D.L., Schoenfisch M.H.: Silica nanoparticle phytotoxicity to Arabidopsis thaliana. - Environ. Sci. Technol. 46: 10247-10254, 2012. Go to original source...
  40. Soares A.S., Driscoll S.P., Olmos E. et al.: Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. - New Phytol. 177: 186-198, 2008. Go to original source...
  41. Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. - Ann. Bot.-London 126: 511-537, 2020. Go to original source...
  42. Tian L., Shen J., Sun G. et al.: Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. - Environ. Sci. Technol. 54: 13137-13146, 2020. Go to original source...
  43. Wei C., Zhang Y., Guo J. et al.: Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. - J. Environ. Sci. 22: 155-160, 2010. Go to original source...
  44. Zahedi S.M., Moharrami F., Sarikhani S., Padervand M.: Selenium and silica nanostructure‑based recovery of strawberry plants subjected to drought stress. - Sci. Rep.-UK 10: 17672, 2020. Go to original source...
  45. Zare G., Diker N.Y., Arituluk Z.C., Tatli Çankaya I.I.: Chelidonium majus L. (Papaveraceae) morphology, anatomy and traditional medicinal uses in Turkey. - Istanbul J. Pharm. 51: 123-132, 2021. Go to original source...
  46. Zhang H., Zhao Y., Zhu J.-K.: Thriving under stress: how plants balance growth and the stress response. - Dev. Cell 55: 529-543, 2020. Go to original source...
  47. Zhori A., Meco M., Brandl H., Bachofen R.: In situ chlorophyll fluorescence kinetics as a tool to quantify effects on photosynthesis in Euphorbia cyparissias by a parasitic infection of the rust fungus Uromyces pisi. - BMC Res. Notes 8: 698, 2015. Go to original source...