СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

STRUCTURE OF 4-STRAND SINGULAR PURE BRAID GROUP

T.A. KOZLOVSKAYA

Abstract

We construct a finite presentation for the singular pure braid group $S P_{4}$ on 4 strands. As consequence it was proved that the center $Z\left(S P_{4}\right)$, which is the infinite cyclic group, is a direct factor in $S P_{4}$. On the other side, we establish that $Z\left(S P_{4}\right)$ is not a direct factor in the singular braid group $S G_{4}$.

Keywords: braid group, pure braid group, singular braid group, singular pure braid group, center of group, finite presentation.

1. Introduction

The braid group $B_{n}, n>1$, was defined by E. Artin [1]. Braid groups play an important role in many fields of mathematics. These groups have been of really interest in the study of classical knots and links (see [8, 18]). E. Artin gave a presentation and showed how to solve the word problem for this group. A. A. Markov [20] constructed a normal form in B_{n}. W. Chow [11] proved that the center of B_{n} is infinite cyclic group. The center of the braid group $Z\left(B_{n}\right)$ coincides with the center of the pure braid group $Z\left(P_{n}\right)$ [20].

The Baez-Birman monoid $S B_{n}$ or singular braid monoid, was introduced independently by J. Baez [2] and J. Birman [9] for studying the finite type knot invariants (Vassiliev-Goussarov invariants). For monoid $S B_{3}$ the word problem was solved by A. Jarai [17] and O. Dashbach, B. Gemein [13]. In general case it was done by R. Corran [10]. L. Paris [23] proved Birman's conjecture, which says that the desingularization map $\eta: S B_{n} \rightarrow \mathbb{Z}\left[B_{n}\right]$ is injective. This also gives a solution for the word problem in the singular braid monoid.

[^0]By results of R. Fenn, E. Keyman and C. Rourke [15] the singular braid monoid $S B_{n}$ embeds in a group, which is said to be the group of singular braids and is denoted by $S G_{n}$. In [4] were introduced monoid and group of pseudo braids and it was proved that they are isomorphic to monoid and group of singular braids, respectively.

The kernel of the homomorphism $B_{n} \rightarrow S_{n}$ of the braid group B_{n} to the symmetric group S_{n} is the subgroup of B_{n} which is called the pure braid group on n strands and is denoted P_{n}. In [12], O. Dasbach and B. Gemein defined the singular pure braid group $S P_{n}$ that is a generalization of the pure braid group P_{n} and is the kernel of the epimorphism $S G_{n} \rightarrow S_{n}$. O. Dasbach and B. Gemein gave a set of generators and defining relations for the group $S P_{n}$ and established that this group can be constructed by HNN-extensions.

Well known that properties of of B_{3} are different from properties of B_{n} for $n>3$. For example, B_{3} is a free product of two cyclic group with amalgamation, but B_{n} for $n>3$ does not have this decomposition. The similar situation for other generalisations of the braid group (see [5] for the virtual braid groups). The singular pure braid group $S P_{3}$ is studied by V. Bardakov and T. Kozlovskaya in [6], where was found a decomposition of this group in some group constructions. Also, it was shown that the center $Z\left(S P_{3}\right)$ is a direct factor in $S P_{3}$. Another approach, which uses some ideas from [3], to the studying of the singular braid group $S G_{3}$ was suggested in [16].

Groups $S G_{n}$ for $n>3$ contain so called far commutativity relation which does not contain $S G_{3}$. Hence, these groups have more complicated structure. In the present article we are studying the case $n=4$.

This article is organized as follows. In Section 2 we review some of the basic theory of braid group B_{n}, pure braid group P_{n} and singular braid monoid $S B_{n}$. In Section 3 we find a presentation of the singular pure braid group $S P_{4}$, using the idea from [7]. We find a finite presentation of $S P_{4}$, which is simpler than the presentation of O. Dasbach and B. Gemein [12]. In Section 4 we prove that the center of the singular braid group $Z\left(S G_{4}\right)$ is a direct factor in $S P_{4}$, but $Z\left(S G_{4}\right)$ is not a direct factor in $S G_{4}$. As consequence was found some other presentation of $S P_{4}$.

2. Prelimanary

We start with the definition of the braid group. The braid group $B_{n}, n \geq 2$, on n strands can be defined as a group generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ with the defining relations

$$
\begin{aligned}
& \quad \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j| \geq 2 \\
& \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad i=1,2, \ldots, n-2 .
\end{aligned}
$$

The generator σ_{i} is said to be the elementary braid. It corresponds to geometric braid in which the i-th strand passes once above the $(i+1)$-th strand, whereas the other strands are straight lines (see Fig. 2). The first relation is called far commutativity, the second relation is called the braid relation. The far commutativity relation is shown in the top of Fig. 1. A geometrical interpretation of the braid relation is given in the bottom of Fig. 1. The presentation of the braid group B_{n} with generators σ_{i} and two types of relations is the algebraic expression of the fact that any isotopy of braids can be broken down into "elementary moves" of two types that correspond to two types of relations.

Fig. 1. The braid relations.
We recall the presentation for the monoid of singular braids on n strands.
The Baez-Birman monoid $[2,9]$ or the singular braid monoid $S B_{n}$ is generated by the elements $\sigma_{i}^{ \pm 1}, \tau_{i}, i=1,2, \ldots, n-1$ (see Fig. 2) satisfying the following relations:

$$
\begin{gathered}
\sigma_{i} \sigma_{i}^{-1}=1 \text { for all } i, \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \text { and } \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \text { for } j>i+1 \\
\sigma_{i} \sigma_{i+1} \tau_{i}=\tau_{i+1} \sigma_{i} \sigma_{i+1} \\
\tau_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \tau_{i+1} \\
\tau_{i} \sigma_{i}=\sigma_{i} \tau_{i} \text { for all } i, \\
\sigma_{i} \tau_{j}=\tau_{j} \sigma_{i}, \text { for } j>i+1, \\
\sigma_{j} \tau_{i}=\tau_{i} \sigma_{j}, \text { for } j>i+1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i}, \text { for } j>i+1
\end{gathered}
$$

Geometrically the generators σ_{i} and τ_{i} are depicted in Figure 2. In pictures σ_{i} corresponds to canonical generator of the braid group and τ_{i} represents an intersection of the i-th and $(i+1)$ th strand as in Figure 2. More detailed geometric interpretation of the Baez-Birman monoid can be found in the article of J. Birman [9]. In [15] it was proved that the singular braid monoid $S B_{n}$ is embedded into the group $S G_{n}$ which is called the singular braid group and has the same defining relations as $S B_{n}$.

Fig. 2. The elementary braids $\sigma_{i}^{-1} \sigma_{i}$ and τ_{i}.
The pure braid group P_{n} is the kernel of the homomorphism of B_{n} onto the symmetric group S_{n} on n symbols. This homomorphism maps σ_{i} to the transposition $(i, i+1), i=1,2, \ldots, n-1$.

The group P_{n} is generated by $a_{i j}, 1 \leq i<j \leq n$. These generators can be expressed by the generators of B_{n} as follows

$$
\begin{gathered}
a_{i, i+1}=\sigma_{i}^{2} \\
a_{i j}=\sigma_{j-1} \sigma_{j-2} \ldots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}, \quad i+1<j \leq n
\end{gathered}
$$

In these generators P_{n} is defined by relations

$$
\begin{gathered}
a_{i k} a_{i j} a_{k j}=a_{k j} a_{i k} a_{i j}, \\
a_{m j} a_{k m} a_{k j}=a_{k j} a_{m j} a_{k m}, \text { for } m<j, \\
\left(a_{k m} a_{k j} a_{k m}^{-1}\right) a_{i m}=a_{i m}\left(a_{k m} a_{k j} a_{k m}^{-1}\right), \text { for } i<k<m<j, \\
a_{k j} a_{i m}=a_{i m} a_{k j}, \text { for } k<i<m<j \text { or } m<k .
\end{gathered}
$$

The subgroup P_{n} is normal in B_{n}, and the quotient B_{n} / P_{n} is the symmetric group S_{n}. The generators of B_{n} act on the generator $a_{i j} \in P_{n}$ by the rules:

$$
\begin{gathered}
\sigma_{k}^{-1} a_{i j} \sigma_{k}=a_{i j}, \text { for } k \neq i-1, i, j-1, j, \\
\sigma_{i}^{-1} a_{i, i+1} \sigma_{i}=a_{i, i+1}, \\
\sigma_{i-1}^{-1} a_{i j} \sigma_{i-1}=a_{i-1, j}, \\
\sigma_{i}^{-1} a_{i j} \sigma_{i}=a_{i+1, j}\left[a_{i, i+1}^{-1}, a_{i j}^{-1}\right], \text { for } j \neq i+1 \\
\sigma_{j-1}^{-1} a_{i j} \sigma_{j-1}=a_{i, j-1}, \\
\sigma_{j}^{-1} a_{i j} \sigma_{j}=a_{i j} a_{i, j+1} a_{i j}^{-1},
\end{gathered}
$$

where $[a, b]=a^{-1} b^{-1} a b=a^{-1} a^{b}$.
Denote by

$$
U_{i}=\left\langle a_{1 i}, a_{2 i}, \ldots, a_{i-1, i}\right\rangle, \quad i=2, \ldots, n
$$

a subgroup of P_{n}. It is known that U_{i} is a free group of rank $i-1$. One can rewrite the relations of P_{n} as the following conjugation rules (for $\varepsilon= \pm 1$):

$$
\begin{gathered}
a_{i k}^{-\varepsilon} a_{k j} a_{i k}^{\varepsilon}=\left(a_{i j} a_{k j}\right)^{\varepsilon} a_{k j}\left(a_{i j} a_{k j}\right)^{-\varepsilon}, \\
a_{k m}^{-\varepsilon} a_{k j} a_{k m}^{\varepsilon}=\left(a_{k j} a_{m j}\right)^{\varepsilon} a_{k j}\left(a_{k j} a_{m j}\right)^{-\varepsilon}, \text { for } m<j, \\
a_{i m}^{-\varepsilon} a_{k j} a_{i m}^{\varepsilon}=\left[a_{i j}^{-\varepsilon}, a_{m j}^{-\varepsilon}\right]^{\varepsilon} a_{k j}\left[a_{i j}^{-\varepsilon}, a_{m j}^{-\varepsilon}\right]^{-\varepsilon}, \text { for } i<k<m, \\
a_{i m}^{-\varepsilon} a_{k j} a_{i m}^{\varepsilon}=a_{k j}, \text { for } k<i<m<j \text { or } m<k .
\end{gathered}
$$

The group P_{n} is the semi-direct product of the normal subgroup U_{n} and the group P_{n-1}. Similarly, P_{n-1} is the semi-direct product of the free group U_{n-1} and the group P_{n-2}, and so on. Therefore, P_{n} is decomposable (see [20]) into the following semi-direct product

$$
P_{n}=U_{n} \rtimes\left(U_{n-1} \rtimes\left(\ldots \rtimes\left(U_{3} \rtimes U_{2}\right)\right) \ldots\right), \quad U_{i} \simeq F_{i-1}, \quad i=2,3, \ldots, n
$$

Define the map

$$
\pi: S G_{n} \longrightarrow S_{n}
$$

of $S G_{n}$ onto the symmetric group S_{n} on n symbols by actions on the generators

$$
\pi\left(\sigma_{i}\right)=\pi\left(\tau_{i}\right)=(i, i+1), \quad i=1,2, \ldots, n-1
$$

The kernel $\operatorname{ker}(\pi)$ of this map is called the singular pure braid group and denoted by $S P_{n}$. It is clear that $S P_{n}$ is a normal subgroup of index n ! of $S G_{n}$ and we have a short exact sequence

$$
1 \rightarrow S P_{n} \rightarrow S G_{n} \rightarrow S_{n} \rightarrow 1
$$

To find a presentation of $S P_{4}$ its possible to use the Reidemeister-Schreier method (see, for example, [19, Ch. 2.2]).

Let $m_{k l}=\rho_{k-1} \rho_{k-2} \ldots \rho_{l}$ for $l<k$ and $m_{k l}=1$ in other cases. Then the set

$$
\Lambda_{n}=\left\{\prod_{k=2}^{n} m_{k, j_{k}} \mid 1 \leq j_{k} \leq k\right\}
$$

is a Schreier set of coset representatives of $S P_{n}$ in $S G_{n}$.
Define the map ${ }^{-}: S G_{n} \longrightarrow \Lambda_{n}$ which takes an element $w \in S G_{n}$ into the representative \bar{w} from Λ_{n}. In this case the element $w \bar{w}^{-1}$ belongs to $S P_{n}$. By Theorem 2.7 from [19] the group $S P_{n}$ is generated by

$$
S_{\lambda, a}=\lambda a \cdot(\overline{\lambda a})^{-1}
$$

where λ runs over the set Λ_{n} and a runs over the set of generators of $S G_{n}$.
To find defining relations of $S P_{n}$ we define a rewriting process τ. It allows us to rewrite a word which is written in the generators of $S G_{n}$ and presents an element in $S P_{n}$ as a word in the generators of $S P_{n}$. Let us associate to the reduced word

$$
u=a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{\nu}^{\varepsilon_{\nu}}, \quad \varepsilon_{l}= \pm 1, \quad a_{l} \in\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}, \tau_{1}, \tau_{2}, \ldots, \tau_{n-1}\right\}
$$

the word

$$
\tau(u)=S_{k_{1}, a_{1}}^{\varepsilon_{1}} S_{k_{2}, a_{2}}^{\varepsilon_{2}} \ldots S_{k_{\nu}, a_{\nu}}^{\varepsilon_{\nu}}
$$

in the generators of $S P_{n}$, where k_{j} is a representative of the $(j-1)$ th initial segment of the word u if $\varepsilon_{j}=1$ and k_{j} is a representative of the j th initial segment of the word u if $\varepsilon_{j}=-1$.

By [19, Theorem 2.9], the group $S P_{n}$ is defined by relations

$$
r_{\mu, \lambda}=\tau\left(\lambda r_{\mu} \lambda^{-1}\right), \quad \lambda \in \Lambda_{n}
$$

where r_{μ} is the defining relation of $S G_{n}$.
The center for the braid group was given by W. Chow [11]. It was proved that $Z\left(P_{n}\right)$ is an infinite cyclic group that is generated by

$$
\Delta_{n}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}=a_{12}\left(a_{13} a_{23}\right) \ldots\left(a_{1 n} a_{2 n} \ldots a_{n-1, n}\right)
$$

It was shown that $Z\left(B_{n}\right) \cong Z\left(S G_{n}\right)$ (see [14, 24]). M. Neshchadim [21, 22] proved that $Z\left(P_{n}\right)$ is a direct factor in P_{n} but it is not a direct factor in B_{n}. By results of V. Bardakov and T. Kozlovskaya [6] the center $Z\left(S G_{3}\right)$ of $S P_{3}$ is a direct factor in $S P_{3}$.

As was shown in [6] the group $S G_{3}$ is generated by elements

$$
a_{12}, a_{13}, a_{23}, b_{12}, b_{13}, b_{23}
$$

and is defined by relations $(\varepsilon= \pm 1)$:

$$
\begin{gathered}
a_{12}^{-\varepsilon} a_{23} a_{12}^{\varepsilon}=\left(a_{13} a_{23}\right)^{\varepsilon} a_{23}\left(a_{13} a_{23}\right)^{-\varepsilon} \\
a_{12}^{-\varepsilon} b_{23} a_{12}^{\varepsilon}=\left(a_{13} a_{23}\right)^{\varepsilon} b_{23}\left(a_{13} a_{23}\right)^{-\varepsilon} \\
a_{12}^{-\varepsilon} a_{13} a_{12}^{\varepsilon}=\left(a_{13} a_{23}\right)^{\varepsilon} a_{13}\left(a_{13} a_{23}\right)^{-\varepsilon} \\
a_{12}^{-\varepsilon} b_{13} a_{12}^{\varepsilon}=\left(a_{13} a_{23}\right)^{\varepsilon} b_{13}\left(a_{13} a_{23}\right)^{-\varepsilon} \\
{\left[a_{12}, b_{12}\right]=\left[a_{13}, b_{13}\right]=\left[a_{23}, b_{23}\right]=1 .} \\
b_{12}^{-\varepsilon}\left(a_{13} a_{23}\right) b_{12}^{\varepsilon}=a_{13} a_{23} .
\end{gathered}
$$

In fact $S P_{3}$ is generated by P_{3} and the subgroup $T P_{3}=\left\langle b_{12}, b_{13}, b_{23}\right\rangle$.

3. Presentation of $S P_{4}$

To find a set of generators and defining relations of $S P_{4}$ on can use the Reidemei-ster-Shraier method (see [19] Paragraph 2.3). For $S P_{3}$ it was done in [6]. To simplify the calculations we will use the same idea as in [7], where was found a presentation for the virtual pure braid group. Using this idea we prove the main result of the present article.

Theorem 1. The singular pure braid group $S P_{4}$, on 4 strands is generated by elements $a_{12}, a_{13}, a_{23}, a_{14}, a_{24}, a_{34}, b_{12}, b_{13}, b_{23}, b_{14}, b_{24}, b_{34}$ is defined by relations:

- commutativity relations:

$$
\begin{align*}
& a_{12} b_{12}=b_{12} a_{12} \tag{1}\\
& a_{13} b_{13}=b_{13} a_{13} \tag{2}\\
& a_{23} b_{23}=b_{23} a_{23} \tag{3}\\
& a_{14} b_{14}=b_{14} a_{14} \tag{4}\\
& a_{24} b_{24}=b_{24} a_{24} \tag{5}\\
& a_{34} b_{34}=b_{34} a_{34} \tag{6}
\end{align*}
$$

- conjugation by a_{12} :

$$
\begin{equation*}
a_{12}^{-1} a_{14} a_{12}=a_{14} a_{24} a_{14} a_{24}^{-1} a_{14}^{-1} \tag{11}
\end{equation*}
$$

$$
\begin{gather*}
a_{12}^{-1} a_{13} a_{12}=a_{13} a_{23} a_{13} a_{23}^{-1} a_{13}^{-1}, \tag{7}\\
a_{12}^{-1} b_{13} a_{12}=a_{13} a_{23} b_{13} a_{23}^{-1} a_{13}^{-1}, \tag{8}\\
a_{12}^{-1} a_{23} a_{12}=a_{13} a_{23} a_{13}^{-1}, \tag{9}\\
a_{12}^{-1} b_{23} a_{12}=a_{13} b_{23} a_{13}^{-1}, \tag{10}
\end{gather*}
$$

$$
\begin{equation*}
a_{12}^{-1} b_{14} a_{12}=a_{14} a_{24} b_{14} a_{24}^{-1} a_{14}^{-1} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
a_{12}^{-1} a_{24} a_{12}=a_{14} a_{24} a_{14}^{-1} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
a_{12}^{-1} b_{24} a_{12}=a_{14} b_{24} a_{14}^{-1} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
a_{12}^{-1} a_{34} a_{12}=a_{34}, \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
a_{12}^{-1} b_{34} a_{12}=b_{34} \tag{16}
\end{equation*}
$$

- conjugation by a_{13} :

$$
\begin{equation*}
a_{13}^{-1} a_{14} a_{13}=a_{14} a_{34} a_{14} a_{34}^{-1} a_{14}^{-1} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
a_{13}^{-1} b_{14} a_{13}=a_{14} a_{34} b_{14} a_{34}^{-1} a_{14}^{-1}, \tag{18}\\
a_{13}^{-1} a_{24} a_{13}=\left[a_{14}^{-1}, a_{34}^{-1}\right] a_{24}\left[a_{34}^{-1}, a_{14}^{-1}\right], \tag{19}\\
a_{13}^{-1} b_{24} a_{13}=\left[a_{14}^{-1}, a_{34}^{-1}\right] b_{24}\left[a_{34}^{-1}, a_{14}^{-1}\right], \tag{20}\\
a_{13}^{-1} a_{34} a_{13}=a_{14} a_{34} a_{14}^{-1}, \tag{21}\\
a_{13}^{-1} b_{34} a_{13}=a_{14} b_{34} a_{14}^{-1}, \tag{22}
\end{gather*}
$$

- conjugation by a_{23} :

$$
\begin{gather*}
a_{23}^{-1} a_{14} a_{23}=a_{14}, \tag{23}\\
a_{23}^{-1} b_{14} a_{23}=b_{14}, \tag{24}\\
a_{23}^{-1} a_{24} a_{23}=a_{24} a_{34} a_{24} a_{34}^{-1} a_{24}^{-1}, \tag{25}\\
a_{23}^{-1} b_{24} a_{23}=a_{24} a_{34} b_{24} a_{34}^{-1} a_{24}^{-1}, \tag{26}\\
a_{23}^{-1} a_{34} a_{23}=a_{24} a_{34} a_{24}^{-1}, \tag{27}\\
a_{23}^{-1} b_{34} a_{23}=a_{24} b_{34} a_{24}^{-1}, \tag{28}
\end{gather*}
$$

- conjugation by b_{12} :

$$
\begin{align*}
b_{12}^{-1}\left(a_{13} a_{23}\right) b_{12} & =a_{13} a_{23}, \tag{29}\\
b_{12}^{-1}\left(a_{14} a_{24}\right) b_{12} & =a_{14} a_{24}, \tag{30}\\
b_{12}^{-1} a_{34} b_{12} & =a_{34}, \tag{31}\\
b_{12}^{-1} b_{34} b_{12} & =b_{34}, \tag{32}
\end{align*}
$$

- conjugation by b_{13} :

$$
\begin{align*}
b_{13}^{-1}\left(a_{14} a_{34}\right) b_{13} & =a_{14} a_{34}, \tag{33}\\
b_{13}^{-1}\left(a_{34}^{-1} a_{24} a_{34}\right) b_{13} & =a_{34}^{-1} a_{24} a_{34}, \tag{34}\\
b_{13}^{-1}\left(a_{34}^{-1} b_{24} a_{34}\right) b_{13} & =a_{34}^{-1} b_{24} a_{34} . \tag{35}
\end{align*}
$$

- conjugation by b_{23} :

$$
\begin{gather*}
b_{23}^{-1} a_{14} b_{23}=a_{14}, \tag{36}\\
b_{23}^{-1} b_{14} b_{23}=b_{14}, \tag{37}\\
b_{23}^{-1}\left(a_{24} a_{34}\right) b_{23}=a_{24} a_{34}, \tag{38}
\end{gather*}
$$

Proof. One can see that the relations (1)-(3), (7)-(10), and (29) of the theorem are relations of $S P_{3}$. We have to show that all other relations follows from the relations of $S G_{4}$. Let us denote $S P_{3}$ by V_{0}. Then

$$
S P_{3}=V_{0}=\left\langle a_{12}, a_{13}, a_{23}, b_{12}, b_{13}, b_{23}\right\rangle
$$

Conjugating $S P_{3}$ by $\sigma_{3}^{-1}, \sigma_{3}^{-1} \sigma_{2}^{-1}, \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1}$, we get three subgroups of the singular pure braid group $S P_{4}$:

$$
\begin{gathered}
\left(S P_{3}\right)^{\sigma_{3}^{-1}}=V_{1}=\left\langle a_{12}, a_{14}, a_{24}, b_{12}, b_{14}, b_{24}\right\rangle \\
\left(S P_{3}\right)^{\sigma_{3}^{-1} \sigma_{2}^{-1}}=V_{2}=\left\langle a_{13}, a_{14}, a_{34}, b_{13}, b_{14}, b_{34}\right\rangle \\
\left(S P_{3}\right)^{\sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1}}=V_{3}=\left\langle a_{23}, a_{24}, a_{34}, b_{23}, b_{24}, b_{34}\right\rangle .
\end{gathered}
$$

It is easy to see that

$$
S P_{4}=\left\langle V_{0}, V_{1}, V_{2}, V_{3}\right\rangle
$$

The group V_{1} is defined by relations:

$$
\begin{gathered}
a_{12}^{-\varepsilon} a_{14} a_{12}^{\varepsilon}=\left(a_{14} a_{24}\right)^{\varepsilon} a_{14}\left(a_{14} a_{24}\right)^{-\varepsilon}, \\
a_{12}^{-\varepsilon} b_{14} a_{12}^{\varepsilon}=\left(a_{14} a_{24}\right)^{\varepsilon} b_{14}\left(a_{14} a_{24}\right)^{-\varepsilon}, \\
a_{12}^{-\varepsilon} a_{24} a_{12}^{\varepsilon}=\left(a_{14} a_{24}\right)^{\varepsilon} a_{24}\left(a_{14} a_{24}\right)^{-\varepsilon}, \\
a_{12}^{-\varepsilon} b_{24} a_{12}^{\varepsilon}=\left(a_{14} a_{24}\right)^{\varepsilon} b_{24}\left(a_{14} a_{24}\right)^{-\varepsilon}, \\
{\left[a_{12}, b_{12}\right]=\left[a_{14}, b_{14}\right]=\left[a_{24}, b_{24}\right]=1,} \\
b_{12}^{-\varepsilon}\left(a_{14} a_{24}\right) b_{12}^{\varepsilon}=a_{14} a_{24} .
\end{gathered}
$$

It is easy to see that these relations coincide with the relations (11)-(14), (1), (4), (5) and (30) from the theorem, respectively.

The group V_{2} is defined by relations:

$$
\begin{gathered}
a_{13}^{-\varepsilon} a_{14} a_{13}^{\varepsilon}=\left(a_{14} a_{34}\right)^{\varepsilon} a_{14}\left(a_{14} a_{34}\right)^{-\varepsilon}, \\
a_{13}^{-\varepsilon} b_{14} a_{13}^{\varepsilon}=\left(a_{14} a_{34}\right)^{\varepsilon} b_{14}\left(a_{14} a_{34}\right)^{-\varepsilon}, \\
a_{13}^{-\varepsilon} a_{34} a_{13}^{\varepsilon}=\left(a_{14} a_{34}\right)^{\varepsilon} a_{34}\left(a_{14} a_{34}\right)^{-\varepsilon}, \\
a_{13}^{-\varepsilon} b_{34} a_{13}^{\varepsilon}=\left(a_{14} a_{34}\right)^{\varepsilon} b_{34}\left(a_{14} a_{34}\right)^{-\varepsilon}, \\
{\left[a_{13}, b_{13}\right]=\left[a_{14}, b_{14}\right]=\left[a_{34}, b_{34}\right]=1,} \\
b_{13}^{-\varepsilon}\left(a_{14} a_{34}\right) b_{13}^{\varepsilon}=a_{14} a_{34} .
\end{gathered}
$$

We note that it is the relations $(17),(18),(21),(22),(2),(4),(6)$ and (33) (see the theorem.

The group V_{3} is defined by relations:

$$
\begin{gathered}
a_{23}^{-\varepsilon} a_{24} a_{23}^{\varepsilon}=\left(a_{24} a_{34}\right)^{\varepsilon} a_{24}\left(a_{24} a_{34}\right)^{-\varepsilon}, \\
a_{23}^{-\varepsilon} b_{24} a_{23}^{\varepsilon}=\left(a_{24} a_{34}\right)^{\varepsilon} b_{24}\left(a_{24} a_{34}\right)^{-\varepsilon} \\
a_{23}^{-\varepsilon} a_{34} a_{23}^{\varepsilon}=\left(a_{24} a_{34}\right)^{\varepsilon} a_{34}\left(a_{24} a_{34}\right)^{-\varepsilon} \\
a_{23}^{-\varepsilon} b_{34} a_{23}^{\varepsilon}=\left(a_{24} a_{34}\right)^{\varepsilon} b_{34}\left(a_{24} a_{34}\right)^{-\varepsilon}, \\
{\left[a_{23}, b_{23}\right]=\left[a_{24}, b_{24}\right]=\left[a_{34}, b_{34}\right]=1,} \\
b_{23}^{-\varepsilon}\left(a_{24} a_{34}\right) b_{23}^{\varepsilon}=a_{24} a_{34} .
\end{gathered}
$$

These relations are the same as the relations (25)-(28), (3), (5), (6) and (38) from the theorem.

We see that the subgroups $V_{0}, V_{1}, V_{2}, V_{3}$ contains relations which follow from long relations of $S G_{4}$ and relations of the form $\sigma_{i} \tau_{i}=\tau_{i} \sigma_{i}, i=1,2,3$. But this subgroups do not contain relations which follow from the far commutativity relations of $S G_{4}$ since $S G_{3}$ dose not contain these relations. Further we will analyze far commutativity relations of $S G_{4}$ and using Reidemeister-Shraier method find the corresponding relations of $S P_{4}$.
Lemma 1. From the relation

$$
\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{3} \sigma_{1}=1
$$

follow the relations

$$
a_{12} a_{34}=a_{34} a_{12}, \quad a_{13}^{-1} a_{24} a_{13}=\left[a_{14}^{-1}, a_{34}^{-1}\right] a_{24}\left[a_{34}^{-1}, a_{14}^{-1}\right], \quad a_{23}^{-1} a_{14} a_{23}=a_{14}
$$

that are relations (15), (19), and (23) of the theorem.
Proof. The relation

$$
\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{3} \sigma_{1}=1
$$

can be presented in the form

$$
S_{\sigma_{3}, \sigma_{3}}^{-1} S_{\sigma_{1} \sigma_{3}, \sigma_{1}}^{-1} S_{\sigma_{1} \sigma_{3}, \sigma_{3}} S_{\sigma_{1}, \sigma_{1}}=1
$$

Since

$$
S_{\sigma_{1}, \sigma_{1}}=S_{\sigma_{1} \sigma_{3}, \sigma_{1}}=a_{12}, \quad S_{\sigma_{3}, \sigma_{3}}=S_{\sigma_{1} \sigma_{3}, \sigma_{3}}=a_{34}
$$

we get the relation $a_{12} a_{34}=a_{34} a_{12}$.
Write the relation in the form

$$
a_{12}^{-1} a_{34} a_{12}=a_{34} .
$$

Conjugating this relation by σ_{2}^{-1}, we get

$$
a_{13}^{-1} a_{34}^{-1} a_{24} a_{34} a_{13}=a_{34}^{-1} a_{24} a_{34}
$$

Take the relation (21)

$$
a_{13}^{-1} a_{34} a_{13}=a_{14} a_{34} a_{14}^{-1}
$$

Then

$$
a_{14} a_{34}^{-1} a_{14}^{-1} a_{24}^{a_{13}} a_{14} a_{34} a_{14}^{-1}=a_{34}^{-1} a_{24} a_{34}
$$

We have

$$
a_{13}^{-1} a_{24} a_{13}=a_{14} a_{34} a_{14}^{-1} a_{34}^{-1} a_{24} a_{34} a_{14} a_{34}^{-1} a_{14}^{-1}
$$

From the previous relation

$$
a_{13}^{-1} a_{24} a_{13}=\left[a_{14}^{-1}, a_{34}^{-1}\right] a_{24}\left[a_{34}^{-1}, a_{14}^{-1}\right] .
$$

Conjugating this relation by σ_{1}^{-1}, we get

$$
a_{23}^{-1} a_{24}^{-1} a_{14} a_{24} a_{23}=\left[a_{24}^{-1}, a_{34}^{-1}\right] a_{24}^{-1} a_{14} a_{24}\left[a_{34}^{-1}, a_{24}^{-1}\right] .
$$

Using the relation $a_{23}^{-1} a_{24} a_{23}=a_{24} a_{34} a_{24} a_{34}^{-1} a_{24}^{-1}$ which holds in V_{3}, we obtain relation

$$
a_{23}^{-1} a_{14} a_{23}=a_{14} .
$$

Conjugating $\left[a_{12}, a_{34}\right]=1$ by other representatives of Λ_{4} one can check that we did not find new relations.

Lemma 2. From the relation

$$
\sigma_{1}^{-1} \tau_{3}^{-1} \sigma_{1} \tau_{3}=1
$$

follow the relations

$$
a_{12} b_{34}=b_{34} a_{12}, \quad b_{24}^{a_{13}}=\left[a_{14}^{-1}, a_{34}^{-1}\right] b_{24}\left[a_{14}^{-1}, a_{34}^{-1}\right]^{-1}, a_{23}^{-1} b_{14} a_{23}=b_{14}
$$

that are relations (16), (20) and (24) of the theorem.
Proof. The relation

$$
\sigma_{1}^{-1} \tau_{3}^{-1} \sigma_{1} \tau_{3}=1
$$

can be presented in the form

$$
S_{\sigma_{1}, \sigma_{1}}^{-1} S_{\sigma_{1} \sigma_{3}, \tau_{3}}^{-1} S_{\sigma_{1} \sigma_{3}, \sigma_{1}} S_{\sigma_{3}, \tau_{3}}=1
$$

Since

$$
S_{\sigma_{3}, \tau_{3}}=S_{\sigma_{1} \sigma_{3}, \tau_{3}}=b_{34}
$$

we get the relation $a_{12} b_{34}=b_{34} a_{12}$.
Conjugating this relation by σ_{2}^{-1} we get

$$
\left(\sigma_{1}^{-1} \tau_{3}^{-1} \sigma_{1} \tau_{3}\right)^{\sigma_{2}^{-1}}=1
$$

From this relation follows the relation

$$
\left(a_{34}^{-1} b_{24} a_{34}\right)^{a_{13}}=a_{34}^{-1} b_{24} a_{34},
$$

which gives

$$
b_{24}^{a_{13}}=a_{34}^{a_{13}} a_{34}^{-1} b_{24} a_{34} a_{34}^{-a_{13}}
$$

Since in P_{4} we have the relation (21)

$$
a_{34}^{a_{13}}=a_{34}^{a_{14}^{-1}}
$$

then we get the relation

$$
b_{24}^{a_{13}}=\left[a_{14}^{-1}, a_{34}^{-1}\right] b_{24}\left[a_{14}^{-1}, a_{34}^{-1}\right]^{-1}
$$

Conjugating this relation by σ_{1}^{-1}, we have

$$
a_{23}^{-1} a_{24}^{-1} b_{14} a_{24} a_{23}=\left[a_{24}^{-1}, a_{34}^{-1}\right] a_{24}^{-1} b_{14} a_{24}\left[a_{34}^{-1}, a_{24}^{-1}\right]
$$

Using the relation $a_{23}^{-1} a_{24} a_{23}=a_{24} a_{34} a_{24} a_{34}^{-1} a_{24}^{-1}$ for the group V_{3}, we get the relation

$$
a_{23}^{-1} b_{14} a_{23}=b_{14}
$$

Conjugating $\left[a_{12}, b_{34}\right]=1$ by other representatives of Λ_{4} one can check that we did not find new relations.

Lemma 3. From the relation

$$
\sigma_{3}^{-1} \tau_{1}^{-1} \sigma_{3} \tau_{1}=1
$$

follows the relations

$$
a_{34} b_{12}=b_{12} a_{34}, b_{13}^{-1}\left(a_{34}^{-1} a_{24} a_{34}\right) b_{13}=a_{34}^{-1} a_{24} a_{34}, b_{23}^{-1} a_{14} b_{23}=a_{14}
$$

that is the relation (31), (34) and (36) of the theorem.
Proof. We can rewrite the relation $\sigma_{3}^{-1} \tau_{1}^{-1} \sigma_{3} \tau_{1}=1$ in the form $a_{34} b_{12}=b_{12} a_{34}$.
Conjugating the relation $\sigma_{3}^{-1} \tau_{1}^{-1} \sigma_{3} \tau_{1}=1$ by σ_{2}^{-1}, we get

$$
\left(a_{34}^{-1} a_{24} a_{34}\right)^{b_{13}}=a_{34}^{-1} a_{24} a_{34},
$$

Conjugating the previous relation by σ_{1}^{-1}, we have

$$
b_{23}^{-1}\left(a_{34}^{-1} a_{24}^{-1} a_{14} a_{24} a_{34}\right) b_{23}=a_{34}^{-1} a_{24}^{-1} a_{14} a_{24} a_{34}
$$

Take the relation

$$
b_{23}^{-1}\left(a_{24} a_{34}\right) b_{23}=a_{24} a_{34}
$$

Then we obtain

$$
b_{23}^{-1} a_{14} b_{23}=a_{14}
$$

Conjugating $\left[a_{34}, b_{12}\right]=1$ by other representatives of Λ_{4} one can check that we did not find new relations.

Lemma 4. From the commutativity relation:

$$
\tau_{1} \tau_{3}=\tau_{3} \tau_{1}
$$

follow relations

$$
b_{12} b_{34}=b_{34} b_{12},\left(a_{34}^{-1} b_{24} a_{34}\right)^{b_{13}}=a_{34}^{-1} b_{24} a_{34}, b_{23}^{-1} b_{14} b_{23}=b_{14}
$$

that are relations (32), (35) and (37) of the theorem.
Proof. We can rewrite $\tau_{1} \tau_{3}=\tau_{3} \tau_{1}$ in the form $b_{12} b_{34}=b_{34} b_{12}$.
Conjugating it by σ_{2}^{-1}, one can get the relation

$$
\left(a_{34}^{-1} b_{24} a_{34}\right)^{b_{13}}=a_{34}^{-1} b_{24} a_{34} .
$$

Conjugating the previous relation by σ_{1}^{-1}, we have

$$
b_{23}^{-1}\left(a_{34}^{-1} a_{24}^{-1} b_{14} a_{24} a_{34}\right) b_{23}=a_{34}^{-1} a_{24}^{-1} b_{14} a_{24} a_{34} .
$$

Take the relation

$$
b_{23}^{-1}\left(a_{24} a_{34}\right) b_{23}=a_{24} a_{34}
$$

Then we obtain

$$
b_{23}^{-1} b_{14} b_{23}=b_{14}
$$

Conjugating $\left[b_{12}, b_{34}\right]=1$ by other representatives of Λ_{4} one can check that we did not find new relations.

Hence, all relations in theorem follows from the relations of singular braid group on 4 strands.

4. Center of $S G_{4}$

It is well-known [20] that the center $Z\left(B_{n}\right)=Z\left(P_{n}\right)$ is infinite cyclic group that is generated by

$$
\Delta_{n}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}=a_{12}\left(a_{13} a_{23}\right) \ldots\left(a_{1 n} a_{2 n} \ldots a_{n-1, n}\right)
$$

It was shown that $Z\left(B_{n}\right) \cong Z\left(S G_{n}\right) \cong Z\left(S P_{n}\right)$ (see [14, 24]). M. V. Neshchadim [21, 22] proved that $Z\left(P_{n}\right)$ is a direct factor in P_{n}, but its not a direct factor of B_{n}. In [6] was proved that $Z\left(S P_{3}\right)$ is a direct factor in $S P_{3}$. In this section we prove the same result for $n=4$. We will use the following notations

$$
\delta_{k}=a_{1 k} a_{2 k} \ldots a_{k-1, k}, \quad k=2,3,4
$$

Then

$$
\Delta_{4}=\delta_{2} \delta_{3} \delta_{4}
$$

Using defining relations of $S P_{4}$ can be proved
Lemma 5. The following formulas hold in $S P_{4}$

$$
\begin{gather*}
a_{14}^{a_{24}^{-1} a_{14}^{-1} \delta_{3} \delta_{4}}=a_{14}, \quad b_{14}^{a_{24}^{-1} a_{14}^{-1} \delta_{3} \delta_{4}}=b_{14}, \tag{39}\\
a_{24}^{a_{14}^{-1} \delta_{3} \delta_{4}}=a_{24}, \quad b_{24}^{a_{14}^{-1} \delta_{3} \delta_{4}}=b_{24} . \tag{40}
\end{gather*}
$$

Lemma 6. For any $i \in\{1,2\}$ the following formulas hold in $S P_{4}$

$$
\begin{aligned}
\left(a_{14} a_{24} a_{34}\right)^{a_{i 3}} & =a_{14} a_{24} a_{34} \\
\left(a_{14} a_{24} a_{34}\right)^{b_{i 3}} & =a_{14} a_{24} a_{34}
\end{aligned}
$$

Now we are ready to prove
Theorem 2. The center $Z\left(S G_{4}\right)$ is a direct factor in $S P_{4}$. But $Z\left(S G_{4}\right)$ is not a direct factor in $S G_{4}$.

Proof. As we know $S P_{4}$ is generated by

$$
a_{i j}, \quad b_{i j}, \quad 1 \leq i<j \leq 4
$$

and is defined by the set of relations R, which we have found in Theorem 1, i.e.

$$
\begin{equation*}
S P_{4}=\left\langle a_{i j}, \quad b_{i j}, \quad 1 \leq i<j \leq 4, \mid R\right\rangle \tag{41}
\end{equation*}
$$

The set of relations R is disjoint union of two subsets, $R=R_{1} \sqcup R_{2}$, where R_{1} is the set of relations which contain a_{12} and R_{2} is the set of relations which do not contain a_{12}. Denote by A the set of generators $S P_{4}$ without generator a_{12} and denote by $H=\langle A\rangle \leq S P_{4}$.

Let us prove that $S P_{4}$ also has the following presentation

$$
\begin{equation*}
S P_{4}=\left\langle A, \Delta_{4} \mid R_{2},\left[\Delta_{4}, a\right]=1, a \in A\right\rangle \tag{42}
\end{equation*}
$$

It is enough to prove that any relation from R_{1} follows from relations R_{2} and relations $\left[\Delta_{4}, a\right]=1, a \in A$. Any relation from R_{1} has one of the forms:

1) $a_{13}^{a_{12}}=a_{13}^{a_{23}^{-1} a_{13}^{-1}} \quad b_{13}^{a_{12}}=b_{13}^{a_{23}^{-1} a_{13}^{-1}}$;
2) $a_{23}^{a_{12}}=a_{23}^{a_{13}^{-1}} \quad b_{23}^{a_{12}}=b_{23}^{a_{13}^{-1}}$;
3) $a_{14}^{a_{12}}=a_{14}^{a_{24}^{-1} a_{14}^{-1}} \quad b_{14}^{a_{12}}=b_{14}^{a_{24}^{-1} a_{14}^{-1}}$;
4) $a_{24}^{a_{12}}=a_{24}^{a_{14}^{-1}} \quad b_{24}^{a_{12}}=b_{24}^{a_{14}^{-1}}$;
5) $a_{34}^{a_{12}}=a_{34} \quad b_{34}^{a_{12}}=b_{34}$,
6) $b_{12}^{a_{12}}=b_{12}$.

Since $\Delta_{4}=\delta_{2} \delta_{3} \delta_{4}$ and $\delta_{2}=a_{12}$, then $a_{12}=\Delta_{4} \delta_{4}^{-1} \delta_{3}^{-1}$. Using this formula, we can remove a_{12} from the generating set of $S P_{4}$. Hence, $S P_{4}$ is generated by A, Δ_{n}.

Let us show that we can remove the set of relations R_{1} and insert the relations $\left[\Delta_{4}, a\right]=1, a \in A$. The first relation of the type 1) can be write in the form

$$
a_{13}^{\Delta_{4} \delta_{4}^{-1} \delta_{3}^{-1}}=a_{13}^{a_{23}^{-1} a_{13}^{-1}}
$$

The element Δ_{4} lies in the center of $S P_{4}$, hence

$$
a_{13}^{\delta_{4}^{-1}}=a_{13}^{a_{23}^{-1} a_{13}^{-1} \delta_{3}} .
$$

Since $\delta_{3}=a_{13} a_{23}$, this relation is equivalent

$$
a_{13}^{\delta_{4}^{-1}}=a_{13} \Leftrightarrow \delta_{4}^{a_{13}}=\delta_{4} .
$$

The last relation is the first relation of of Lemma 6. So, we can remove the first relation of the form 1).

By the same way, we can show that we can remove the second relation of the form 1).

The relation of the type 2) can be rewrite as

$$
a_{23}^{\Delta_{4} \delta_{4}^{-1} \delta_{3}^{-1}}=a_{23}^{a_{13}^{-1}}
$$

The element Δ_{4} lies in the center of $S P_{4}$, consequently

$$
a_{23}^{\delta_{4}^{-1}}=a_{23}^{a_{13}^{-1} \delta_{3}}
$$

This relation is equivalent

$$
a_{23}^{\delta_{4}^{-1}}=a_{23}^{a_{23}} \Leftrightarrow \delta_{4}^{a_{23}}=\delta_{4}
$$

The last relation is the first relation of of Lemma 6. Hence, we can remove the first relation of the form 2).

Analogously, one can consider the second relation of the form 2).
3) We can write this relation in the form

$$
a_{14}^{\Delta_{4} \delta_{4}^{-1} \delta_{3}^{-1}}=a_{14}^{a_{24}^{-1} a_{14}^{-1}}
$$

The element Δ_{4} lies in the center of $S P_{4}$, hence

$$
a_{14}^{\delta_{4}^{-1}}=a_{14}^{a_{24}^{-1} a_{14}^{-1} \delta_{3}} .
$$

From the first relation of Lemma 5 follows that the left side of this relation is equal to a_{14}. From the first relation of Lemma 6 follows that the right side of this
relation is equal to a_{14}. Hence, we can remove the first relation of the form 3). By the same way, using the second relation of Lemma 5 and the second relation of Lemma 6 we can show that we can remove the second relation of the form 3).

The relations of the form 4) is considered by analogy.
5) We can write this relation in the form

$$
a_{34}^{\Delta_{4} \delta_{4}^{-1} \delta_{3}^{-1}}=a_{34}
$$

The element Δ_{4} lies in the center of $S P_{4}$, then

$$
a_{34}^{\delta_{4}^{-1}}=a_{34}^{\delta_{3}} .
$$

The last relation is equivalent

$$
a_{34}^{a_{34}^{-1} a_{24}^{-1} a_{14}^{-1}}=a_{34}^{a_{13} a_{23}} .
$$

Using the following relations from Theorem 1:

$$
a_{34}^{a_{13}}=a_{34}^{a_{14}^{-1}}, a_{34}^{a_{23}}=a_{34}^{a_{24}^{-1}}, a_{14}^{a_{23}}=a_{14},
$$

we get

$$
a_{34}^{a_{13} a_{23}}=\left(a_{34}^{a_{14}^{-1}}\right)^{a_{23}}=a_{34}^{a_{24}^{-1} a_{14}^{-1}}
$$

Therefore, 5) follows from the relation $\left[\Delta_{4}, a_{34}\right]=1$ and the relations which do not contain a_{12}.
6) We can write this relation in the form

$$
b_{12}^{\Delta_{4} \delta_{4}^{-1} \delta_{3}^{-1}}=b_{12}
$$

The element Δ_{4} lies in the center of $S P_{4}$, then

$$
b_{12}^{\delta_{4}^{-1} \delta_{3}^{-1}}=b_{12} .
$$

Using the conjugation rules by b_{12} one can check

$$
\delta_{4}^{b_{12}}=\delta_{4}, \quad \delta_{3}^{b_{12}}=\delta_{3},
$$

i. e. 6) follows from the relation $\left[\Delta_{4}, b_{12}\right]=1$ and the relations which do not contain a_{12}.

Hence, $S P_{4}$ has the presentation (42).
From this presentation follows that there are two epimorphisms

$$
\begin{gathered}
\pi_{1}: S P_{4} \rightarrow Z\left(S G_{4}\right), \quad \pi_{1}\left(\Delta_{4}\right)=\Delta_{4}, \quad \pi_{1}(a)=1 \text { for all } a \in A \\
\pi_{2}: S P_{4} \rightarrow H, \quad \pi_{2}\left(\Delta_{4}\right)=1, \quad \pi_{2}(a)=a \text { for all } a \in A
\end{gathered}
$$

Hence, $S P_{4}=\left\langle Z\left(S G_{4}\right), H\right\rangle$, the subgroup H has a presentation

$$
H=\left\langle A \mid R_{2}\right\rangle
$$

and $Z\left(S G_{4}\right) \cap H=1$. We proved the first part of the theorem.
The second part of the theorem follows from the fact that there exists an epimorphism $S G_{4} \rightarrow B_{4}$ and from the fact that $Z\left(B_{4}\right)$ is not a direct factor of B_{4}.

From this theorem we get other presentation for $S P_{4}$.

Corollary 1. The singular pure braid group $S P_{4}$, on 4 strands is generated by elements $\Delta_{4}, a_{13}, a_{23}, a_{14}, a_{24}, a_{34}, b_{12}, b_{13}, b_{23}, b_{14}, b_{24}, b_{34}$ is defined by relations:

$$
\Delta_{4} c=c \Delta_{4}, \quad c \in\left\{a_{13}, a_{23}, a_{14}, a_{24}, a_{34}, b_{12}, b_{13}, b_{23}, b_{14}, b_{24}, b_{34}\right\}
$$

- commutativity relations:

$$
\begin{aligned}
& a_{13} b_{13}=b_{13} a_{13}, \\
& a_{23} b_{23}=b_{23} a_{23}, \\
& a_{14} b_{14}=b_{14} a_{14}, \\
& a_{24} b_{24}=b_{24} a_{24}, \\
& a_{34} b_{34}=b_{34} a_{34},
\end{aligned}
$$

- conjugation by a_{13} :

$$
\begin{gathered}
a_{13}^{-1} a_{14} a_{13}=a_{14} a_{34} a_{14} a_{34}^{-1} a_{14}^{-1}, \\
a_{13}^{-1} b_{14} a_{13}=a_{14} a_{34} b_{14} a_{34}^{-1} a_{14}^{-1}, \\
a_{13}^{-1} a_{24} a_{13}=\left[a_{14}^{-1}, a_{34}^{-1}\right] a_{24}\left[a_{34}^{-1}, a_{14}^{-1}\right], \\
a_{13}^{-1} b_{24} a_{13}=\left[a_{14}^{-1}, a_{34}^{-1}\right] b_{24}\left[a_{34}^{-1}, a_{14}^{-1}\right], \\
a_{13}^{-1} a_{34} a_{13}=a_{14} a_{34} a_{14}^{-1}, \\
a_{13}^{-1} b_{34} a_{13}=a_{14} b_{34} a_{14}^{-1},
\end{gathered}
$$

- conjugation by a_{23} :

$$
\begin{gathered}
a_{23}^{-1} a_{14} a_{23}=a_{14}, \\
a_{23}^{-1} b_{14} a_{23}=b_{14}, \\
a_{23}^{-1} a_{24} a_{23}=a_{24} a_{34} a_{24} a_{34}^{-1} a_{24}^{-1}, \\
a_{23}^{-1} b_{24} a_{23}=a_{24} a_{34} b_{24} a_{34}^{-1} a_{24}^{-1}, \\
a_{23}^{-1} a_{34} a_{23}=a_{24} a_{34} a_{24}^{-1}, \\
a_{23}^{-1} b_{34} a_{23}=a_{24} b_{34} a_{24}^{-1},
\end{gathered}
$$

- conjugation by b_{12} :

$$
\begin{gathered}
b_{12}^{-1}\left(a_{13} a_{23}\right) b_{12}=a_{13} a_{23}, \\
b_{12}^{-1}\left(a_{14} a_{24}\right) b_{12}=a_{14} a_{24}, \\
b_{12}^{-1} a_{34} b_{12}=a_{34}, \\
b_{12}^{-1} b_{34} b_{12}=b_{34},
\end{gathered}
$$

- conjugation by b_{13} :

$$
\begin{gathered}
b_{13}^{-1}\left(a_{14} a_{34}\right) b_{13}=a_{14} a_{34} \\
b_{13}^{-1}\left(a_{34}^{-1} a_{24} a_{34}\right) b_{13}=a_{34}^{-1} a_{24} a_{34} \\
b_{13}^{-1}\left(a_{34}^{-1} b_{24} a_{34}\right) b_{13}=a_{34}^{-1} b_{24} a_{34} .
\end{gathered}
$$

- conjugation by b_{23} :

$$
\begin{gathered}
b_{23}^{-1} a_{14} b_{23}=a_{14} \\
b_{23}^{-1} b_{14} b_{23}=b_{14} \\
b_{23}^{-1}\left(a_{24} a_{34}\right) b_{23}=a_{24} a_{34}
\end{gathered}
$$

References

[1] E. Artin, Theory of braids, Ann. Math. (2), 48 1947, 101-126. Zbl 0030.17703
[2] J.C. Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys., 26:1 (1992), 43-51. Zbl 0792.57002
[3] V.G. Bardakov, P. Bellingeri, Combinatorial properties of virtual braids, Topology Appl., 156:6 (2009), 1071-1082. Zbl 1196.20044
[4] V.G. Bardakov, S. Jablan, H. Wang, Monoid and group of pseudo braids, J. Knot Theory Ramifications, 25:9 (2016), Article ID 1641002. Zbl 1396.20033
[5] V.G. Bardakov, R. Mikhailov, V.V. Vershinin, J Wu, On the pure virtual braid group PV3. Commun. Algebra, 44:3 (2016), 1350-1378. Zbl 1344.20048
[6] V.G. Bardakov, T.A. Kozlovskaya, On 3-strand singular pure braid group, J. Knot Theory Ramifications, 29:10 (2020), Article ID 2042001. Zbl 7291634
[7] V.G. Bardakov, J. Wu, Lifting theorem for the virtual pure braid groups, arXiv:2002.08686, (2020).
[8] J.S. Birman, Braids, links and mapping class group, Annals of Mathematics Studies, 82, Princeton University Press and University of Tokyo Press, Princeton, 1975. Zbl 0305.57013
[9] J.S. Birman, New points of view in knot theory, Bull. Am. Math. Soc., New Ser., $28: 2$ (1993), 253-287. Zbl 0785.57001
[10] R. Corran, A normal form for a class of monoids including the singular braid monoid, J. Algebra, 223:1 (2000), 256-282. Zbl 0971.20035
[11] W.-L. Chow, On the algebraic braid group, Ann. Math. (2), 49:3 (1948), 654-658. Zbl 0033.01002
[12] O.T. Dasbach, B. Gemein, The word problem for the singular braid monoid, arXiv:math/9809070, (1998).
[13] O.T. Dasbach, B. Gemein, A faithful representation of the singular braid monoid on three strands, arXiv:math/9806050, (1998).
[14] R. Fenn, D. Rolfsen, J. Zhu, Centralizers in the braid group and singular braid monoid. Enseign. Math., II. Sér., 42:1-2 (1996), 75-96. Zbl 0869.20024
[15] R. Fenn, E. Keyman, C. Rourke, The singular braid monoid embeds in a group, J. Knot Theory Ramifications, 7:7 (1998), 881-892. Zbl 0971.57011
[16] K. Gongopadhyay, T. Kozlovskaya, O. Mamonov, On some decompositions of the 3-strand singular braid group, Topology Appl., 283 (2020), Article ID 107398. Zbl 7285222
[17] A. Járai, On the monoid of singular braids, Topology Appl., 96:2 (1999) 109-119. Zbl 0939.57010
[18] C. Kassel, V. Turaev, Braid groups, Graduate Texts in Mathematics, 247, Springer, New York, 2008. Zbl 1208.20041
[19] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York etc., 1966. Zbl 0138.25604
[20] A.A. Markoff, Foundations of the algebraic theory of braids, Tr. Mat. Inst. Steklova, 16, 1945. Zbl 0061.02507
[21] M.V. Neshchadim, Inner automorphisms and some their generalizations. Sib. Èlektron. Mat. Izv., 13 (2016), 1383-1400. Zbl 1385.20013
[22] M.V. Neshchadim, Normal automorphisms of braid groups. Preprint, 4, Institute of mathimatics SB RAN, Novosibirsk, 1993.
[23] L. Paris, Braid groups and Artin groups, In Papadopoulos, Athanase (ed.), Handbook of Teichmuller theory. Vol. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, 389-451, Eur. Math. Soc., Zurich, 2009. Zbl 1230.20040
[24] V.V. Vershinin, On the singular braid monoid, St. Petersbg. Math. J., 21:5 (2010), 693-704. Zbl 1201.20056

Tatyana Anatolevna Kozlovskaya
Regional Scientific and Educational Mathematical Center
of Tomsk State University,
36, Lenin ave.,
Tomsk, 634050, Russia
Email address: t.kozlovskaya@math.tsu.ru

[^0]: Kozlovskaya, T.A., Structure of 4 -strand singular pure braid group.
 (C) 2022 Kozlovskaya T.A.

 This work was supported by the Ministry of Science and Higher Education of Russia (agreement No. 075-02-2021-1392).

 Received December, 20, 2021, published January, 12, 2022.

