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STRUCTURE OF 4-STRAND SINGULAR PURE BRAID GROUP

T.A. KOZLOVSKAYA

Abstract. We construct a �nite presentation for the singular pure
braid group SP4 on 4 strands. As consequence it was proved that the
center Z(SP4), which is the in�nite cyclic group, is a direct factor in
SP4. On the other side, we establish that Z(SP4) is not a direct factor
in the singular braid group SG4.
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1. Introduction

The braid group Bn, n > 1, was de�ned by E. Artin [1]. Braid groups play an
important role in many �elds of mathematics. These groups have been of really
interest in the study of classical knots and links (see [8, 18]). E. Artin gave a
presentation and showed how to solve the word problem for this group. A. A. Markov
[20] constructed a normal form in Bn. W. Chow [11] proved that the center of Bn is
in�nite cyclic group. The center of the braid group Z(Bn) coincides with the center
of the pure braid group Z(Pn) [20].

The Baez�Birman monoid SBn or singular braid monoid, was introduced indepen-
dently by J. Baez [2] and J. Birman [9] for studying the �nite type knot invariants
(Vassiliev-Goussarov invariants). For monoid SB3 the word problem was solved
by A. Jarai [17] and O. Dashbach, B. Gemein [13]. In general case it was done
by R. Corran [10]. L. Paris [23] proved Birman's conjecture, which says that the
desingularization map η: SBn → Z [Bn] is injective. This also gives a solution for
the word problem in the singular braid monoid.
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By results of R. Fenn, E. Keyman and C. Rourke [15] the singular braid monoid
SBn embeds in a group, which is said to be the group of singular braids and is
denoted by SGn. In [4] were introduced monoid and group of pseudo braids and
it was proved that they are isomorphic to monoid and group of singular braids,
respectively.

The kernel of the homomorphism Bn → Sn of the braid group Bn to the
symmetric group Sn is the subgroup of Bn which is called the pure braid group
on n strands and is denoted Pn. In [12], O. Dasbach and B. Gemein de�ned the
singular pure braid group SPn that is a generalization of the pure braid group Pn
and is the kernel of the epimorphism SGn → Sn. O. Dasbach and B. Gemein gave
a set of generators and de�ning relations for the group SPn and established that
this group can be constructed by HNN-extensions.

Well known that properties of of B3 are di�erent from properties of Bn for
n > 3. For example, B3 is a free product of two cyclic group with amalgamation,
but Bn for n > 3 does not have this decomposition. The similar situation for other
generalisations of the braid group (see [5] for the virtual braid groups). The singular
pure braid group SP3 is studied by V. Bardakov and T. Kozlovskaya in [6], where
was found a decomposition of this group in some group constructions. Also, it was
shown that the center Z(SP3) is a direct factor in SP3. Another approach, which
uses some ideas from [3], to the studying of the singular braid group SG3 was
suggested in [16].

Groups SGn for n > 3 contain so called far commutativity relation which does
not contain SG3. Hence, these groups have more complicated structure. In the
present article we are studying the case n = 4.

This article is organized as follows. In Section 2 we review some of the basic
theory of braid group Bn, pure braid group Pn and singular braid monoid SBn.
In Section 3 we �nd a presentation of the singular pure braid group SP4, using
the idea from [7]. We �nd a �nite presentation of SP4, which is simpler than the
presentation of O. Dasbach and B. Gemein [12]. In Section 4 we prove that the
center of the singular braid group Z(SG4) is a direct factor in SP4, but Z(SG4) is
not a direct factor in SG4. As consequence was found some other presentation of
SP4.

2. Prelimanary

We start with the de�nition of the braid group. The braid group Bn, n ≥ 2, on
n strands can be de�ned as a group generated by σ1, σ2, . . . , σn−1 with the de�ning
relations

σi σj = σj σi, |i− j| ≥ 2,
σi σi+1 σi = σi+1 σi σi+1, i = 1, 2, . . . , n− 2.

The generator σi is said to be the elementary braid. It corresponds to geometric
braid in which the i-th strand passes once above the (i + 1)-th strand, whereas
the other strands are straight lines (see Fig. 2). The �rst relation is called far
commutativity, the second relation is called the braid relation. The far commutativity
relation is shown in the top of Fig. 1. A geometrical interpretation of the braid
relation is given in the bottom of Fig. 1. The presentation of the braid group Bn
with generators σi and two types of relations is the algebraic expression of the fact
that any isotopy of braids can be broken down into �elementary moves� of two types
that correspond to two types of relations.
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Fig. 1. The braid relations.

We recall the presentation for the monoid of singular braids on n strands.
The Baez�Birman monoid [2, 9] or the singular braid monoid SBn is generated

by the elements σ±1
i , τi, i = 1, 2, . . . , n − 1 (see Fig. 2) satisfying the following

relations:
σi σ

−1
i = 1 for all i,

σi σi+1 σi = σi+1 σi σi+1 and σiσj = σjσi, for j > i+ 1

σi σi+1 τi = τi+1 σi σi+1,

τi σi+1 σi = σi+1 σi τi+1,

τi σi = σi τi for all i,

σi τj = τj σi, for j > i+ 1,

σj τi = τi σj , for j > i+ 1,

τi τj = τj τi, for j > i+ 1.

Geometrically the generators σi and τi are depicted in Figure 2. In pictures σi
corresponds to canonical generator of the braid group and τi represents an intersection
of the i-th and (i+1)th strand as in Figure 2. More detailed geometric interpretation
of the Baez�Birman monoid can be found in the article of J. Birman [9]. In [15] it
was proved that the singular braid monoid SBn is embedded into the group SGn
which is called the singular braid group and has the same de�ning relations as SBn.

Fig. 2. The elementary braids σ−1
i σi and τi .

The pure braid group Pn is the kernel of the homomorphism of Bn onto the
symmetric group Sn on n symbols. This homomorphism maps σi to the transposition
(i, i+ 1), i = 1, 2, . . . , n− 1.
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The group Pn is generated by aij , 1 ≤ i < j ≤ n. These generators can be
expressed by the generators of Bn as follows

ai,i+1 = σ2
i ,

aij = σj−1 σj−2 . . . σi+1 σ
2
i σ

−1
i+1 . . . σ

−1
j−2 σ

−1
j−1, i+ 1 < j ≤ n.

In these generators Pn is de�ned by relations

aikaijakj = akjaikaij ,

amjakmakj = akjamjakm, for m < j,

(akmakja
−1
km)aim = aim(akmakja

−1
km), for i < k < m < j,

akjaim = aimakj , for k < i < m < j or m < k.

The subgroup Pn is normal in Bn, and the quotient Bn/Pn is the symmetric group
Sn. The generators of Bn act on the generator aij ∈ Pn by the rules:

σ−1
k aijσk = aij , for k 6= i− 1, i, j − 1, j,

σ−1
i ai,i+1σi = ai,i+1,

σ−1
i−1aijσi−1 = ai−1,j ,

σ−1
i aijσi = ai+1,j [a

−1
i,i+1, a

−1
ij ], for j 6= i+ 1

σ−1
j−1aijσj−1 = ai,j−1,

σ−1
j aijσj = aijai,j+1a

−1
ij ,

where [a, b] = a−1b−1ab = a−1ab.
Denote by

Ui = 〈a1i, a2i, . . . , ai−1,i〉, i = 2, . . . , n,

a subgroup of Pn. It is known that Ui is a free group of rank i− 1. One can rewrite
the relations of Pn as the following conjugation rules (for ε = ±1):

a−εik akja
ε
ik = (aijakj)

εakj(aijakj)
−ε,

a−εkmakja
ε
km = (akjamj)

εakj(akjamj)
−ε, for m < j,

a−εimakja
ε
im = [a−εij , a

−ε
mj ]

εakj [a
−ε
ij , a

−ε
mj ]

−ε, for i < k < m,

a−εimakja
ε
im = akj , for k < i < m < j or m < k.

The group Pn is the semi�direct product of the normal subgroup Un and the
group Pn−1. Similarly, Pn−1 is the semi�direct product of the free group Un−1

and the group Pn−2, and so on. Therefore, Pn is decomposable (see [20]) into the
following semi�direct product

Pn = Un o (Un−1 o (. . .o (U3 o U2)) . . .), Ui ' Fi−1, i = 2, 3, . . . , n.

De�ne the map

π : SGn −→ Sn

of SGn onto the symmetric group Sn on n symbols by actions on the generators

π(σi) = π(τi) = (i, i+ 1), i = 1, 2, . . . , n− 1.

The kernel ker(π) of this map is called the singular pure braid group and denoted
by SPn. It is clear that SPn is a normal subgroup of index n! of SGn and we have
a short exact sequence

1→ SPn → SGn → Sn → 1.
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To �nd a presentation of SP4 its possible to use the Reidemeister�Schreier
method (see, for example, [19, Ch. 2.2]).

Let mkl = ρk−1 ρk−2 . . . ρl for l < k and mkl = 1 in other cases. Then the set

Λn =

{
n∏
k=2

mk,jk |1 ≤ jk ≤ k

}
is a Schreier set of coset representatives of SPn in SGn.

De�ne the map − : SGn −→ Λn which takes an element w ∈ SGn into the
representative w from Λn. In this case the element ww−1 belongs to SPn. By
Theorem 2.7 from [19] the group SPn is generated by

Sλ,a = λa · (λa)−1,

where λ runs over the set Λn and a runs over the set of generators of SGn.
To �nd de�ning relations of SPn we de�ne a rewriting process τ . It allows us to

rewrite a word which is written in the generators of SGn and presents an element
in SPn as a word in the generators of SPn. Let us associate to the reduced word

u = aε11 aε22 . . . aενν , εl = ±1, al ∈ {σ1, σ2, . . . , σn−1, τ1, τ2, . . . , τn−1},
the word

τ(u) = Sε1k1,a1 S
ε2
k2,a2

. . . Sενkν ,aν
in the generators of SPn, where kj is a representative of the (j−1)th initial segment
of the word u if εj = 1 and kj is a representative of the jth initial segment of the
word u if εj = −1.

By [19, Theorem 2.9], the group SPn is de�ned by relations

rµ,λ = τ(λ rµ λ
−1), λ ∈ Λn,

where rµ is the de�ning relation of SGn.
The center for the braid group was given by W. Chow [11]. It was proved that

Z(Pn) is an in�nite cyclic group that is generated by

∆n = (σ1σ2 . . . σn−1)n = a12(a13a23) . . . (a1na2n . . . an−1,n).

It was shown that Z(Bn) ∼= Z(SGn) (see [14, 24]). M. Neshchadim [21, 22] proved
that Z(Pn) is a direct factor in Pn but it is not a direct factor in Bn. By results of
V. Bardakov and T. Kozlovskaya [6] the center Z(SG3) of SP3 is a direct factor in
SP3.

As was shown in [6] the group SG3 is generated by elements

a12, a13, a23, b12, b13, b23,

and is de�ned by relations (ε = ±1 ):

a−ε12 a23a
ε
12 = (a13a23)εa23(a13a23)−ε,

a−ε12 b23a
ε
12 = (a13a23)εb23(a13a23)−ε,

a−ε12 a13a
ε
12 = (a13a23)εa13(a13a23)−ε,

a−ε12 b13a
ε
12 = (a13a23)εb13(a13a23)−ε,

[a12, b12] = [a13, b13] = [a23, b23] = 1.

b−ε12 (a13a23)bε12 = a13a23.
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In fact SP3 is generated by P3 and the subgroup TP3 = 〈b12, b13, b23〉.

3. Presentation of SP4

To �nd a set of generators and de�ning relations of SP4 on can use the Reidemei-
ster-Shraier method (see [19] Paragraph 2.3). For SP3 it was done in [6]. To simplify
the calculations we will use the same idea as in [7], where was found a presentation
for the virtual pure braid group. Using this idea we prove the main result of the
present article.

Theorem 1. The singular pure braid group SP4, on 4 strands is generated by
elements a12, a13, a23, a14, a24, a34, b12, b13, b23, b14, b24, b34 is de�ned by relations:

� commutativity relations:

(1) a12b12 = b12a12,

(2) a13b13 = b13a13,

(3) a23b23 = b23a23,

(4) a14b14 = b14a14,

(5) a24b24 = b24a24,

(6) a34b34 = b34a34,

� conjugation by a12:

(7) a−1
12 a13a12 = a13a23a13a

−1
23 a

−1
13 ,

(8) a−1
12 b13a12 = a13a23b13a

−1
23 a

−1
13 ,

(9) a−1
12 a23a12 = a13a23a

−1
13 ,

(10) a−1
12 b23a12 = a13b23a

−1
13 ,

(11) a−1
12 a14a12 = a14a24a14a

−1
24 a

−1
14 ,

(12) a−1
12 b14a12 = a14a24b14a

−1
24 a

−1
14 ,

(13) a−1
12 a24a12 = a14a24a

−1
14 ,

(14) a−1
12 b24a12 = a14b24a

−1
14 ,

(15) a−1
12 a34a12 = a34,

(16) a−1
12 b34a12 = b34,

� conjugation by a13:

(17) a−1
13 a14a13 = a14a34a14a

−1
34 a

−1
14 ,
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(18) a−1
13 b14a13 = a14a34b14a

−1
34 a

−1
14 ,

(19) a−1
13 a24a13 = [a−1

14 , a
−1
34 ]a24[a−1

34 , a
−1
14 ],

(20) a−1
13 b24a13 = [a−1

14 , a
−1
34 ]b24[a−1

34 , a
−1
14 ],

(21) a−1
13 a34a13 = a14a34a

−1
14 ,

(22) a−1
13 b34a13 = a14b34a

−1
14 ,

� conjugation by a23:

(23) a−1
23 a14a23 = a14,

(24) a−1
23 b14a23 = b14,

(25) a−1
23 a24a23 = a24a34a24a

−1
34 a

−1
24 ,

(26) a−1
23 b24a23 = a24a34b24a

−1
34 a

−1
24 ,

(27) a−1
23 a34a23 = a24a34a

−1
24 ,

(28) a−1
23 b34a23 = a24b34a

−1
24 ,

� conjugation by b12:

(29) b−1
12 (a13a23)b12 = a13a23,

(30) b−1
12 (a14a24)b12 = a14a24,

(31) b−1
12 a34b12 = a34,

(32) b−1
12 b34b12 = b34,

� conjugation by b13:

(33) b−1
13 (a14a34)b13 = a14a34,

(34) b−1
13

(
a−1

34 a24a34

)
b13 = a−1

34 a24a34,

(35) b−1
13

(
a−1

34 b24a34

)
b13 = a−1

34 b24a34.

� conjugation by b23:

(36) b−1
23 a14b23 = a14,

(37) b−1
23 b14b23 = b14,

(38) b−1
23 (a24a34)b23 = a24a34,
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Proof. One can see that the relations (1)�(3), (7)�(10), and (29) of the theorem are
relations of SP3. We have to show that all other relations follows from the relations
of SG4. Let us denote SP3 by V0. Then

SP3 = V0 = 〈a12, a13, a23, b12, b13, b23〉 .
Conjugating SP3 by σ−1

3 , σ−1
3 σ−1

2 , σ−1
3 σ−1

2 σ−1
1 , we get three subgroups of the

singular pure braid group SP4:

(SP3)
σ−1
3 = V1 = 〈a12, a14, a24, b12, b14, b24〉 ,

(SP3)
σ−1
3 σ−1

2 = V2 = 〈a13, a14, a34, b13, b14, b34〉 ,

(SP3)
σ−1
3 σ−1

2 σ−1
1 = V3 = 〈a23, a24, a34, b23, b24, b34〉 .

It is easy to see that
SP4 = 〈V0, V1, V2, V3〉 .

The group V1 is de�ned by relations:

a−ε12 a14a
ε
12 = (a14a24)εa14(a14a24)−ε,

a−ε12 b14a
ε
12 = (a14a24)εb14(a14a24)−ε,

a−ε12 a24a
ε
12 = (a14a24)εa24(a14a24)−ε,

a−ε12 b24a
ε
12 = (a14a24)εb24(a14a24)−ε,

[a12, b12] = [a14, b14] = [a24, b24] = 1,

b−ε12 (a14a24)bε12 = a14a24.

It is easy to see that these relations coincide with the relations (11)-(14), (1), (4),
(5) and (30) from the theorem, respectively.

The group V2 is de�ned by relations:

a−ε13 a14a
ε
13 = (a14a34)εa14(a14a34)−ε,

a−ε13 b14a
ε
13 = (a14a34)εb14(a14a34)−ε,

a−ε13 a34a
ε
13 = (a14a34)εa34(a14a34)−ε,

a−ε13 b34a
ε
13 = (a14a34)εb34(a14a34)−ε,

[a13, b13] = [a14, b14] = [a34, b34] = 1,

b−ε13 (a14a34)bε13 = a14a34.

We note that it is the relations (17), (18), (21), (22), (2), (4), (6) and (33) (see the
theorem.

The group V3 is de�ned by relations:

a−ε23 a24a
ε
23 = (a24a34)εa24(a24a34)−ε,

a−ε23 b24a
ε
23 = (a24a34)εb24(a24a34)−ε,

a−ε23 a34a
ε
23 = (a24a34)εa34(a24a34)−ε,

a−ε23 b34a
ε
23 = (a24a34)εb34(a24a34)−ε,

[a23, b23] = [a24, b24] = [a34, b34] = 1,

b−ε23 (a24a34)bε23 = a24a34.

These relations are the same as the relations (25)-(28), (3), (5), (6) and (38) from
the theorem.



26 T.A. KOZLOVSKAYA

We see that the subgroups V0, V1, V2, V3 contains relations which follow from
long relations of SG4 and relations of the form σiτi = τiσi, i = 1, 2, 3. But
this subgroups do not contain relations which follow from the far commutativity
relations of SG4 since SG3 dose not contain these relations. Further we will analyze
far commutativity relations of SG4 and using Reidemeister-Shraier method �nd the
corresponding relations of SP4.

Lemma 1. From the relation

σ−1
3 σ−1

1 σ3σ1 = 1

follow the relations

a12a34 = a34a12, a−1
13 a24a13 =

[
a−1

14 , a
−1
34

]
a24

[
a−1

34 , a
−1
14

]
, a−1

23 a14a23 = a14,

that are relations (15), (19), and (23) of the theorem.

Proof. The relation

σ−1
3 σ−1

1 σ3σ1 = 1

can be presented in the form

S−1
σ3,σ3

S−1
σ1σ3,σ1

Sσ1σ3,σ3
Sσ1,σ1

= 1.

Since

Sσ1,σ1 = Sσ1σ3,σ1 = a12, Sσ3,σ3 = Sσ1σ3,σ3 = a34,

we get the relation a12a34 = a34a12.
Write the relation in the form

a−1
12 a34a12 = a34.

Conjugating this relation by σ−1
2 , we get

a−1
13 a

−1
34 a24a34a13 = a−1

34 a24a34

Take the relation (21)

a−1
13 a34a13 = a14a34a

−1
14 .

Then

a14a
−1
34 a

−1
14 a

a13
24 a14a34a

−1
14 = a−1

34 a24a34.

We have

a−1
13 a24a13 = a14a34a

−1
14 a

−1
34 a24a34a14a

−1
34 a

−1
14 .

From the previous relation

a−1
13 a24a13 =

[
a−1

14 , a
−1
34

]
a24

[
a−1

34 , a
−1
14

]
.

Conjugating this relation by σ−1
1 , we get

a−1
23 a

−1
24 a14a24a23 =

[
a−1

24 , a
−1
34

]
a−1

24 a14a24

[
a−1

34 , a
−1
24

]
.

Using the relation a−1
23 a24a23 = a24a34a24a

−1
34 a

−1
24 which holds in V3, we obtain

relation

a−1
23 a14a23 = a14.
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Conjugating [a12, a34] = 1 by other representatives of Λ4 one can check that we
did not �nd new relations. �

Lemma 2. From the relation

σ−1
1 τ−1

3 σ1τ3 = 1

follow the relations

a12b34 = b34a12, ba1324 = [a−1
14 , a

−1
34 ]b24[a−1

14 , a
−1
34 ]−1, a−1

23 b14a23 = b14

that are relations (16), (20) and (24) of the theorem.

Proof. The relation

σ−1
1 τ−1

3 σ1τ3 = 1

can be presented in the form

S−1
σ1,σ1

S−1
σ1σ3,τ3Sσ1σ3,σ1

Sσ3,τ3 = 1.

Since

Sσ3,τ3 = Sσ1σ3,τ3 = b34,

we get the relation a12b34 = b34a12.
Conjugating this relation by σ−1

2 we get(
σ−1

1 τ−1
3 σ1τ3

)σ−1
2 = 1.

From this relation follows the relation(
a−1

34 b24a34

)a13
= a−1

34 b24a34,

which gives

ba1324 = aa1334 a
−1
34 b24a34a

−a13
34 .

Since in P4 we have the relation (21)

aa1334 = a
a−1
14

34 ,

then we get the relation

ba1324 = [a−1
14 , a

−1
34 ]b24[a−1

14 , a
−1
34 ]−1.

Conjugating this relation by σ−1
1 , we have

a−1
23 a

−1
24 b14a24a23 =

[
a−1

24 , a
−1
34

]
a−1

24 b14a24

[
a−1

34 , a
−1
24

]
Using the relation a−1

23 a24a23 = a24a34a24a
−1
34 a

−1
24 for the group V3, we get the

relation

a−1
23 b14a23 = b14.

Conjugating [a12, b34] = 1 by other representatives of Λ4 one can check that we
did not �nd new relations. �
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Lemma 3. From the relation

σ−1
3 τ−1

1 σ3τ1 = 1

follows the relations

a34b12 = b12a34, b
−1
13

(
a−1

34 a24a34

)
b13 = a−1

34 a24a34, b
−1
23 a14b23 = a14.

that is the relation (31), (34) and (36) of the theorem.

Proof. We can rewrite the relation σ−1
3 τ−1

1 σ3τ1 = 1 in the form a34b12 = b12a34.
Conjugating the relation σ−1

3 τ−1
1 σ3τ1 = 1 by σ−1

2 , we get(
a−1

34 a24a34

)b13
= a−1

34 a24a34,

Conjugating the previous relation by σ−1
1 , we have

b−1
23

(
a−1

34 a
−1
24 a14a24a34

)
b23 = a−1

34 a
−1
24 a14a24a34.

Take the relation

b−1
23 (a24a34) b23 = a24a34.

Then we obtain

b−1
23 a14b23 = a14.

Conjugating [a34, b12] = 1 by other representatives of Λ4 one can check that we
did not �nd new relations.

�

Lemma 4. From the commutativity relation:

τ1τ3 = τ3τ1

follow relations

b12b34 = b34b12,
(
a−1

34 b24a34

)b13
= a−1

34 b24a34, b
−1
23 b14b23 = b14.

that are relations (32), (35) and (37) of the theorem.

Proof. We can rewrite τ1τ3 = τ3τ1 in the form b12b34 = b34b12.
Conjugating it by σ−1

2 , one can get the relation(
a−1

34 b24a34

)b13
= a−1

34 b24a34.

Conjugating the previous relation by σ−1
1 , we have

b−1
23

(
a−1

34 a
−1
24 b14a24a34

)
b23 = a−1

34 a
−1
24 b14a24a34.

Take the relation

b−1
23 (a24a34) b23 = a24a34.

Then we obtain

b−1
23 b14b23 = b14.

Conjugating [b12, b34] = 1 by other representatives of Λ4 one can check that we
did not �nd new relations. �
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Hence, all relations in theorem follows from the relations of singular braid group
on 4 strands.

�

4. Center of SG4

It is well-known [20] that the center Z(Bn) = Z(Pn) is in�nite cyclic group that
is generated by

∆n = (σ1σ2 . . . σn−1)n = a12(a13a23) . . . (a1na2n . . . an−1,n).

It was shown that Z(Bn) ∼= Z(SGn) ∼= Z(SPn) (see [14, 24]). M. V. Neshchadim
[21, 22] proved that Z(Pn) is a direct factor in Pn, but its not a direct factor of Bn.
In [6] was proved that Z(SP3) is a direct factor in SP3. In this section we prove
the same result for n = 4. We will use the following notations

δk = a1ka2k . . . ak−1,k, k = 2, 3, 4.

Then
∆4 = δ2δ3δ4.

Using de�ning relations of SP4 can be proved

Lemma 5. The following formulas hold in SP4

(39) a
a−1
24 a

−1
14 δ3δ4

14 = a14, b
a−1
24 a

−1
14 δ3δ4

14 = b14,

(40) a
a−1
14 δ3δ4

24 = a24, b
a−1
14 δ3δ4

24 = b24.

Lemma 6. For any i ∈ {1, 2} the following formulas hold in SP4

(a14a24a34)ai3 = a14a24a34,

(a14a24a34)bi3 = a14a24a34.

Now we are ready to prove

Theorem 2. The center Z(SG4) is a direct factor in SP4. But Z(SG4) is not a
direct factor in SG4.

Proof. As we know SP4 is generated by

aij , bij , 1 ≤ i < j ≤ 4,

and is de�ned by the set of relations R, which we have found in Theorem 1, i.e.

(41) SP4 = 〈aij , bij , 1 ≤ i < j ≤ 4, | R〉.
The set of relations R is disjoint union of two subsets, R = R1 t R2, where R1

is the set of relations which contain a12 and R2 is the set of relations which do
not contain a12. Denote by A the set of generators SP4 without generator a12 and
denote by H = 〈A〉 ≤ SP4.

Let us prove that SP4 also has the following presentation

(42) SP4 = 〈A,∆4 | R2, [∆4, a] = 1, a ∈ A〉.
It is enough to prove that any relation from R1 follows from relations R2 and
relations [∆4, a] = 1, a ∈ A. Any relation from R1 has one of the forms:
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1) aa1213 = a
a−1
23 a

−1
13

13 ba1213 = b
a−1
23 a

−1
13

13 ;

2) aa1223 = a
a−1
13

23 ba1223 = b
a−1
13

23 ;

3) aa1214 = a
a−1
24 a

−1
14

14 ba1214 = b
a−1
24 a

−1
14

14 ;

4) aa1224 = a
a−1
14

24 ba1224 = b
a−1
14

24 ;

5) aa1234 = a34 ba1234 = b34,

6) ba1212 = b12.

Since ∆4 = δ2δ3δ4 and δ2 = a12, then a12 = ∆4δ
−1
4 δ−1

3 . Using this formula, we
can remove a12 from the generating set of SP4. Hence, SP4 is generated by A,∆n.

Let us show that we can remove the set of relations R1 and insert the relations
[∆4, a] = 1, a ∈ A. The �rst relation of the type 1) can be write in the form

a
∆4δ

−1
4 δ−1

3
13 = a

a−1
23 a

−1
13

13 .

The element ∆4 lies in the center of SP4, hence

a
δ−1
4

13 = a
a−1
23 a

−1
13 δ3

13 .

Since δ3 = a13a23, this relation is equivalent

a
δ−1
4

13 = a13 ⇔ δa134 = δ4.

The last relation is the �rst relation of of Lemma 6. So, we can remove the �rst
relation of the form 1).

By the same way, we can show that we can remove the second relation of the
form 1).

The relation of the type 2) can be rewrite as

a
∆4δ

−1
4 δ−1

3
23 = a

a−1
13

23 .

The element ∆4 lies in the center of SP4, consequently

a
δ−1
4

23 = a
a−1
13 δ3

23 .

This relation is equivalent

a
δ−1
4

23 = aa2323 ⇔ δa234 = δ4.

The last relation is the �rst relation of of Lemma 6. Hence, we can remove the �rst
relation of the form 2).

Analogously, one can consider the second relation of the form 2).
3) We can write this relation in the form

a
∆4δ

−1
4 δ−1

3
14 = a

a−1
24 a

−1
14

14 .

The element ∆4 lies in the center of SP4, hence

a
δ−1
4

14 = a
a−1
24 a

−1
14 δ3

14 .

From the �rst relation of Lemma 5 follows that the left side of this relation is
equal to a14. From the �rst relation of Lemma 6 follows that the right side of this
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relation is equal to a14. Hence, we can remove the �rst relation of the form 3). By
the same way, using the second relation of Lemma 5 and the second relation of
Lemma 6 we can show that we can remove the second relation of the form 3).

The relations of the form 4) is considered by analogy.
5) We can write this relation in the form

a
∆4δ

−1
4 δ−1

3
34 = a34.

The element ∆4 lies in the center of SP4, then

a
δ−1
4

34 = aδ334.

The last relation is equivalent

a
a−1
34 a

−1
24 a

−1
14

34 = aa13a2334 .

Using the following relations from Theorem 1:

aa1334 = a
a−1
14

34 , aa2334 = a
a−1
24

34 , aa2314 = a14,

we get

aa13a2334 =
(
a
a−1
14

34

)a23
= a

a−1
24 a

−1
14

34 .

Therefore, 5) follows from the relation [∆4, a34] = 1 and the relations which do not
contain a12.

6) We can write this relation in the form

b
∆4δ

−1
4 δ−1

3
12 = b12.

The element ∆4 lies in the center of SP4, then

b
δ−1
4 δ−1

3
12 = b12.

Using the conjugation rules by b12 one can check

δb124 = δ4, δb123 = δ3,

i. e. 6) follows from the relation [∆4, b12] = 1 and the relations which do not contain
a12.

Hence, SP4 has the presentation (42).
From this presentation follows that there are two epimorphisms

π1 : SP4 → Z(SG4), π1(∆4) = ∆4, π1(a) = 1 for all a ∈ A;

π2 : SP4 → H, π2(∆4) = 1, π2(a) = a for all a ∈ A.
Hence, SP4 = 〈Z(SG4), H〉, the subgroup H has a presentation

H = 〈A | R2〉

and Z(SG4) ∩H = 1. We proved the �rst part of the theorem.
The second part of the theorem follows from the fact that there exists an

epimorphism SG4 → B4 and from the fact that Z(B4) is not a direct factor of
B4. �

From this theorem we get other presentation for SP4.
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Corollary 1. The singular pure braid group SP4, on 4 strands is generated by
elements ∆4, a13, a23, a14, a24, a34, b12, b13, b23, b14, b24, b34 is de�ned by relations:

∆4c = c∆4, c ∈ {a13, a23, a14, a24, a34, b12, b13, b23, b14, b24, b34},
� commutativity relations:

a13b13 = b13a13,

a23b23 = b23a23,

a14b14 = b14a14,

a24b24 = b24a24,

a34b34 = b34a34,

� conjugation by a13:

a−1
13 a14a13 = a14a34a14a

−1
34 a

−1
14 ,

a−1
13 b14a13 = a14a34b14a

−1
34 a

−1
14 ,

a−1
13 a24a13 = [a−1

14 , a
−1
34 ]a24[a−1

34 , a
−1
14 ],

a−1
13 b24a13 = [a−1

14 , a
−1
34 ]b24[a−1

34 , a
−1
14 ],

a−1
13 a34a13 = a14a34a

−1
14 ,

a−1
13 b34a13 = a14b34a

−1
14 ,

� conjugation by a23:

a−1
23 a14a23 = a14,

a−1
23 b14a23 = b14,

a−1
23 a24a23 = a24a34a24a

−1
34 a

−1
24 ,

a−1
23 b24a23 = a24a34b24a

−1
34 a

−1
24 ,

a−1
23 a34a23 = a24a34a

−1
24 ,

a−1
23 b34a23 = a24b34a

−1
24 ,

� conjugation by b12:

b−1
12 (a13a23)b12 = a13a23,

b−1
12 (a14a24)b12 = a14a24,

b−1
12 a34b12 = a34,

b−1
12 b34b12 = b34,

� conjugation by b13:

b−1
13 (a14a34)b13 = a14a34,

b−1
13

(
a−1

34 a24a34

)
b13 = a−1

34 a24a34,

b−1
13

(
a−1

34 b24a34

)
b13 = a−1

34 b24a34.

� conjugation by b23:

b−1
23 a14b23 = a14,

b−1
23 b14b23 = b14,

b−1
23 (a24a34)b23 = a24a34,
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