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STRUCTURE OF 4-STRAND SINGULAR PURE BRAID GROUP

T.A. KOZLOVSKAYA

ABSTRACT. We construct a finite presentation for the singular pure
braid group SPs on 4 strands. As consequence it was proved that the
center Z(SPs), which is the infinite cyclic group, is a direct factor in
SPy. On the other side, we establish that Z(SPs) is not a direct factor
in the singular braid group SGj.

Keywords: braid group, pure braid group, singular braid group, singular
pure braid group, center of group, finite presentation.

1. INTRODUCTION

The braid group B, n > 1, was defined by E. Artin [1]. Braid groups play an
important role in many fields of mathematics. These groups have been of really
interest in the study of classical knots and links (see [8, 18]). E. Artin gave a
presentation and showed how to solve the word problem for this group. A. A. Markov
[20] constructed a normal form in B,,. W. Chow [11] proved that the center of B, is
infinite cyclic group. The center of the braid group Z(B,,) coincides with the center
of the pure braid group Z(P,) [20].

The Baez—Birman monoid S B,, or singular braid monoid, was introduced indepen-
dently by J. Baez [2] and J. Birman [9] for studying the finite type knot invariants
(Vassiliev-Goussarov invariants). For monoid SBs the word problem was solved
by A. Jarai [17] and O. Dashbach, B. Gemein [13]. In general case it was done
by R. Corran [10]. L. Paris [23] proved Birman’s conjecture, which says that the
desingularization map n: SB,, — Z [B,] is injective. This also gives a solution for
the word problem in the singular braid monoid.
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By results of R. Fenn, E. Keyman and C. Rourke [15] the singular braid monoid
SB, embeds in a group, which is said to be the group of singular braids and is
denoted by SG,,. In [4] were introduced monoid and group of pseudo braids and
it was proved that they are isomorphic to monoid and group of singular braids,
respectively.

The kernel of the homomorphism B, — S, of the braid group B, to the
symmetric group S, is the subgroup of B,, which is called the pure braid group
on n strands and is denoted P,. In [12], O. Dasbach and B. Gemein defined the
singular pure braid group SP, that is a generalization of the pure braid group P,
and is the kernel of the epimorphism SG,, — S,. O. Dasbach and B. Gemein gave
a set of generators and defining relations for the group SP, and established that
this group can be constructed by HNN-extensions.

Well known that properties of of Bz are different from properties of B, for
n > 3. For example, Bs is a free product of two cyclic group with amalgamation,
but B,, for n > 3 does not have this decomposition. The similar situation for other
generalisations of the braid group (see [5] for the virtual braid groups). The singular
pure braid group SP; is studied by V. Bardakov and T. Kozlovskaya in [6], where
was found a decomposition of this group in some group constructions. Also, it was
shown that the center Z(SPs) is a direct factor in SPs;. Another approach, which
uses some ideas from [3], to the studying of the singular braid group SG3 was
suggested in [16].

Groups SG,, for n > 3 contain so called far commutativity relation which does
not contain SG3. Hence, these groups have more complicated structure. In the
present article we are studying the case n = 4.

This article is organized as follows. In Section 2 we review some of the basic
theory of braid group B,, pure braid group P, and singular braid monoid SB,.
In Section 3 we find a presentation of the singular pure braid group SPj, using
the idea from [7]. We find a finite presentation of SPy, which is simpler than the
presentation of O. Dasbach and B. Gemein [12]. In Section 4 we prove that the
center of the singular braid group Z(SG4) is a direct factor in SPy, but Z(SGy) is
not a direct factor in SG4. As consequence was found some other presentation of
SPy.

2. PRELIMANARY

We start with the definition of the braid group. The braid group B,, n > 2, on
n strands can be defined as a group generated by o1, 09, ...,0,_1 with the defining
relations
0,045 = 0504, ‘Z—j‘ZQ,
0;0;410; = 0;4+1004+1, i:1,2,...,’ﬂ72.
The generator o; is said to be the elementary braid. It corresponds to geometric
braid in which the i-th strand passes once above the (i + 1)-th strand, whereas
the other strands are straight lines (see Fig. 2). The first relation is called far
commutativity, the second relation is called the braid relation. The far commutativity
relation is shown in the top of Fig. 1. A geometrical interpretation of the braid
relation is given in the bottom of Fig. 1. The presentation of the braid group B,
with generators o; and two types of relations is the algebraic expression of the fact
that any isotopy of braids can be broken down into “elementary moves” of two types
that correspond to two types of relations.
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Fi1G. 1. The braid relations.

We recall the presentation for the monoid of singular braids on n strands.

The Baez—Birman monoid [2, 9] or the singular braid monoid SB,, is generated
by the elements 0'?:1, T, 0 = 1,2,...,n — 1 (see Fig. 2) satisfying the following
relations:

o o'i_1 =1 for all 7,
0§ 0i+10; = 0i4+1 040441 and 0305 = 0503, for j > i+ 1
0i0i+1 Ty = Ti+1 04 Oi+1,
Ti Oi+1 04 = 0441 04 Ti+1,
T; 0, = o; 7; for all 4,
0;7; =710 for j >i4+1,
0;T;, =T;0j, for j >i4+1,
TiTj =TT, for j >4+ 1.
Geometrically the generators o; and 7; are depicted in Figure 2. In pictures o;
corresponds to canonical generator of the braid group and 7; represents an intersection
of the i-th and (i+1)th strand as in Figure 2. More detailed geometric interpretation
of the Baez—Birman monoid can be found in the article of J. Birman [9]. In [15] it
was proved that the singular braid monoid SB,, is embedded into the group SG,
which is called the singular braid group and has the same defining relations as SB,,.
i i+2 n

FiGg. 2. The elementary braids 0;1 o; and 7; .

n

The pure braid group P, is the kernel of the homomorphism of B,, onto the
symmetric group S, on n symbols. This homomorphism maps o; to the transposition
(i,i4+1),i=1,2,...,n— 1.
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The group P, is generated by a;;j, 1 < i < j < n. These generators can be
expressed by the generators of B, as follows

2
Qi i+1 = 05,

2 _—1 -1 -1 ; ;
Qjj =0j—105-2...0410; 0,44 ...0, 50,1, t+1<j<n.

In these generators P, is defined by relations
AifAijAkj = AkjQik g,
i QlemOkj = Qkjlm;Gkm, for m < j,
(akmakja,;nll)aim = aim(akmakjal;i), fori<k<m<yj,
QkjGim = QimAkj, for k <i<m < jorm <k.

The subgroup P, is normal in B,,, and the quotient B,,/P, is the symmetric group
Sp. The generators of B, act on the generator a;; € P, by the rules:

U,Zlaijak =ay, fork#i1—-1,1,5—1,7,

O, Q3410 = Qi i41,
U;_llaijo'ifl =Gi-1;,
o la 00 = ai+17j[ai_’iﬂrl,ai_jl], forj#i+1
0; 210051 = Qi j—1,

o i

j
where [a,b] = a~'b"tab = a~la’.
Denote by

Aij0j = Qij@i 410

Us = (a1i, a2, - ., Gi—14), 1=2,...,n,
a subgroup of P,. It is known that U; is a free group of rank ¢ — 1. One can rewrite
the relations of P, as the following conjugation rules (for e = £1):
Ay akjagy, = (Qijar;) an; (@ijar;) ™",
A Oy = (k@) Ak (Qrjam;) <, for m < j,

—a s |75, fori <k <m,

—€
ij > mj

Ui Wj Ay = @ Farjla;, am;
Ay Qi 5, = akj, for k<i<m<jorm<k.

The group P, is the semi—direct product of the normal subgroup U, and the
group P,_i. Similarly, P,_; is the semi—direct product of the free group U,_;
and the group P,_s, and so on. Therefore, P, is decomposable (see [20]) into the
following semi—direct product

Pn:UnX](Un,l><I(...><1(U3><1U2)>...), Ui:Fifh i:2,3,...,n.

Define the map

T:8G, — S,
of SG,, onto the symmetric group S,, on n symbols by actions on the generators
m(o;) =m(r) = (,i+1), i=1,2,....,n—1.

The kernel ker(w) of this map is called the singular pure braid group and denoted
by SP,. It is clear that SP, is a normal subgroup of index n! of SG,, and we have
a short exact sequence

1— SP, — SG, — S, — 1.
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To find a presentation of SP, its possible to use the Reidemeister—Schreier
method (see, for example, [19, Ch. 2.2]).
Let my; = pg—1 pr—2...p; for I < k and my; = 1 in other cases. Then the set

n — {Hmk,jk“ Sjk <k}

k=2
is a Schreier set of coset representatives of SP, in SG,,.
Define the map — : SG,, — A,, which takes an element w € SG,, into the
representative w from A,. In this case the element ww ! belongs to SP,. By
Theorem 2.7 from [19] the group SP, is generated by

S)\,a =Aa- (E)_l,

where A runs over the set A,, and a runs over the set of generators of SG,,.

To find defining relations of S P, we define a rewriting process 7. It allows us to
rewrite a word which is written in the generators of SG,, and presents an element
in SP, as a word in the generators of SP,. Let us associate to the reduced word

1> 13 Ey _
u=aitax?...a’, e ==%x1, a €{01,09,...,0n-1,T1,T2 -+, Tn—1}
the word
€1 £92 Ev
( ) Skl ay Skz az " "” Skwa,,

in the generators of SP,, where k; is a representative of the (j —1)th initial segment
of the word u if ¢; = 1 and k; is a representative of the jth initial segment of the
word u if ; = —1.

By [19, Theorem 2.9], the group SP, is defined by relations

T =TAT, AT, A€ A,

where 7, is the defining relation of SG,,.

The center for the braid group was given by W. Chow [11]. It was proved that
Z(P,) is an infinite cyclic group that is generated by

A, = (0102 Unfl)n = a12(a13a23) s (a1na2n cee anfl,n)

It was shown that Z(B,) = Z(SG,,) (see [14, 24]). M. Neshchadim [21, 22] proved
that Z(P,) is a direct factor in P, but it is not a direct factor in B,,. By results of
V. Bardakov and T. Kozlovskaya [6] the center Z(SG3) of SPs is a direct factor in
SPs.

As was shown in [6] the group SG3 is generated by elements

aiz2, 13, azs, b1z, b1z, bas,
and is defined by relations (¢ = £1 ):

ays a23ai; = (a13a23)°asz(aizazs)”*
ajy bazaf, = (a13a23)baz(a13azs) ™ *
aj3 a13ai; = (a13a23) a13(a1zazs) ™",
ayy b1zafy = (a13a23)°b13(aizass) ™ ©

[ai2, bi2] = [a13, bi3] = [ass, bag] = 1.

—E £
bis (a13a23)bis = a13azs.
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In fact SPs is generated by P; and the subgroup TP; = (b1, b13, ba3).

3. PRESENTATION OF SP,

To find a set of generators and defining relations of S P, on can use the Reidemei-
ster-Shraier method (see [19] Paragraph 2.3). For SPs it was done in [6]. To simplify
the calculations we will use the same idea as in [7], where was found a presentation
for the virtual pure braid group. Using this idea we prove the main result of the
present article.

Theorem 1. The singular pure braid group SPy, on 4 strands is generated by
elements ai2,a13,023, 014,024, Qa34, b12, 6137 623, b14, 624, b34 18 deﬁned by relations:

— commutativity relations:
a12b12 = bi2a12,
a13b13 = bizais,
ag3ba3 = bazans,

a24b24 = ba40a24,

(1)
(2)
3)
4) a14b14 = b1aa14,
(5)
(6)

a34b34 = b34a34,

— conjugation by aio:

(7) a1y 13012 = A13023013053 A13
(8) ajy bi3a1z = a13assbizags ajy
(9) ajy agsaiz = a13as3aly
(10) ayy bazary = arsbazaiy,
(11) (15 G14012 = (1402401405, Q14
(12) a1_21b14a12 = a14a24b14a2_41a1_417
(13) a7y 24012 = Q14024075 ,
(14) ayy basary = aisbasaiy,
(15) ayy asaary = ass,

(16) a1y b3aars = baa,

— conjugation by ai3:

-1 1 -1
(17) (13 A14Q13 = 014034014034 G4
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(18) ajs biaars = aiaasabiaazy agy
(19) arg 621013 = [ay, agyanafagy, aiy],
(20) a1_31b24a13 = [a1_417a§41]524 [a;f, a1_41}7
(21) aj3 asia13 = a14a34074

(22) ayy bsaars = aiabssaiy,

— conjugation by ass:

(23) (g3 14023 = a4,

(24) ags braass = b,

(25) (33 24023 = A2403402403; a5)
(26) a33 baaaos = anaazabosazy asy
(27) a531a34a23 = a24a34a§41,
(28) a33 bsaaos = azabssazy

— congugation by bio:

(29) b1y (a13a23)b12 = arsans,
(30) b1y (a14024)b12 = a14a04,
(31) bis azsbia = asa,
(32) b1y bsabiz = bas,

— conjugation by bys:

(33) bis (@14a34)b13 = a14a34,
(34) by (a3) asaass) bis = a3} aseasa,
(35) by (as)beaass) biz = asy basaza.

— conjugation by bas:
(36) bys a1abas = aia,
(37) bys brabas = b,

(38) bys (a24a34)ba3 = azsaza,
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Proof. One can see that the relations (1)—(3), (7)—(10), and (29) of the theorem are
relations of SP3;. We have to show that all other relations follows from the relations
of SG4. Let us denote SP; by V. Then

SPS = VO = <(1,12, @13, 23, b127 b137 b23> .

1 1 1

Conjugating SP3 by 03_1, 03_102_1, 04 05 01, we get three subgroups of the

singular pure braid group SP;:

1
(SP3)7 =Vi = (a12, a1a, a24, bia, bia, bos),
1 -1
(SP3)7 72 =V, = (a13, a14, a4, b1, bra, baa),

—1 -1 _—1
(SP3)7 72 7t =V3 = (ag3, az4, az4, b3, baa, b3a).
It is easy to see that
SPy = Vo, Vi, Vo, V3).
The group V; is defined by relations:

€ €

—€ 1>
a1y 614059 = (@14a24)°a14(G 1424

( ) )75,
ayy bisafy = (a14024)"b14(a14024) ",
a13 02405 = (A14024)% az4(a14024) ",
a1 ba4aly = (a14a24) b24(a14a24) ",
[alz, 512] = [61147 514] = [024, 524] =1,
bis (a14a24)b7y = a14a24.
It is easy to see that these relations coincide with the relations (11)-(14), (1), (4),
(5) and (30) from the theorem, respectively.
The group V5 is defined by relations:

€ —€

—& £
aj3 014053 = (a14034)°a14(a14a34

1> €
bia(aisa3a

) ) )
ayy biaais = (ar14a34) )7
ay; azaais = (a14a34) asa(araass) ™,
ajs b3aals = (a14a34)°b3a(araa34) "%,
lai3, bi3] = [a14, bia] = [asa, bs3a] =1,
bis (@14a34)bT3 = G14a34.
We note that it is the relations (17), (18), (21), (22), (2), (4), (6) and (33) (see the
theorem.
The group V3 is defined by relations:

g g

Ay Q24053 = (A24034)° G24(A24a34) "
“boa(agaasza) ™
fasqa(agaaza)”

)

—E& 15 g
Qo3 b34G23 = (a24a34 b34(ag4a34

) ;
(g3 baaasy = (a24034) -
33 34053 = (a24a34) €

) —€

[a3, bas] = [a24, bos] = [asa, b34] =1,
bas (a24a34)b33 = azsaza.

These relations are the same as the relations (25)-(28), (3), (5), (6) and (38) from
the theorem.
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We see that the subgroups Vj, Vi, Vo, V3 contains relations which follow from
long relations of SG4 and relations of the form o;7; = 7,04, i = 1,2,3. But
this subgroups do not contain relations which follow from the far commutativity
relations of SG4 since SG3 dose not contain these relations. Further we will analyze
far commutativity relations of SG4 and using Reidemeister-Shraier method find the
corresponding relations of SP;.

Lemma 1. From the relation
03_101_10301 =1
follow the relations
-1 -1 -1 -1 -1 -1
112034 = G34012, 1324013 = [%4 s a34] a24 [a34 , a14] y (93 014023 = 14,
that are relations (15), (19), and (23) of the theorem.
Proof. The relation
ngaflagal =1
can be presented in the form
-1 g-1 _
503,0350103’0150103,03501’01 =1L
Since
So1,00 = Soro3,00 = 012, Sos,05 = Soro3,05 = U34,

we get the relation a12034 = A34012-
Write the relation in the form

aly asaaiz = ass.
Conjugating this relation by o5 1 we get

-1, -1 -1
G133y 24034013 = Q34 A24034
Take the relation (21)

-1 -1
13 A34013 = 014034074 -
Then

—1_—1_ay; ~1 ~1
140Q34 Q14 Q5> 01403407, = Qg A24034.
We have

-1 -1 -1 -1 -1
(13 024013 = Q14034014 Q34 024034014034 Q14 -
From the previous relation

-1 -1 -1 -1 -1
Qy3 A24013 = [a14 ) a34] (24 [a34 ) a14] .
Conjugating this relation by o] 1 we get
-1 -1 -1 _-17 -1 -1 -1
(o3 Gy 014024023 = [%4 ) O34 ] (o4 014024 [a34 ) G2 ] :
Using the relation a531a24a23 = a24a34a24a§41a§41 which holds in V3, we obtain

relation

-1
Gg3 (14023 = Q14
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Conjugating [a12,azs] = 1 by other representatives of A4 one can check that we
did not find new relations. O

Lemma 2. From the relation
01_17'3_1017'3 =1
follow the relations
_ a3 _ [,—1 —1 -1  —17-1 —1 _
a12bzs = basarz, by}® = layy, azy baslary,az;] ", ag biaass = by
that are relations (16), (20) and (24) of the theorem.

Proof. The relation
J;1T§101T3 =1
can be presented in the form

St o Sk 50103,01503773 =1

01,01 70103,T3
Since
Sag,rg = 80'103,7'3 = b347
we get the relation a12b34 = bsgai2.
Conjugating this relation by o5 1 we get
-1
(0;17510173)02 =1.
From this relation follows the relation
(a;41b24a34)a13 = a3_41b24a34,
which gives

b3 = a§i®agy brassazy"®.

Since in Py we have the relation (21)

—1
a1z __ %14
A3y = Q34
then we get the relation
a13 __ —1 —1 —1 —11-1
b3i® = layy,azq |baalary,az0]

Conjugating this relation by o] ! we have

-1 -1 -1 —17 -1 -1 -1
A3 gy braazsass = [%4 y A3y ] gy braazq [a34 y oy ]

Using the relation a2_31a24a23 = ag4a34a24a§41a2_41 for the group V3, we get the
relation

—1
Qg3 biaagz = big.

Conjugating [a12, bs4] = 1 by other representatives of A4 one can check that we
did not find new relations. O
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Lemma 3. From the relation
03_17'1_1037'1 =1
follows the relations
azabiz = bizaza, big (a§41a24a34) b1z = a3, 24034, byy G14boz = ay4.
that is the relation (31), (34) and (36) of the theorem.

Proof. We can rewrite the relation 03_17'1_10371 = 1 in the form assb12 = bi2as4.
Conjugating the relation o3 7 tosm = 1 by o5 L, we get
3 1 3 y 2
-1 bis ]
(a34 a24a34) = Qg4 024034,

Conjugating the previous relation by o', we have

—1 -1 -1 -1 -1
b23 (a34 oy al4a24a34) baz = A3y Ggy A14024034.
Take the relation

—1
bys (a24a34) baz = ag4a34.

Then we obtain

bay a14b2s = aia.
Conjugating [as4, b12] = 1 by other representatives of A4 one can check that we

did not find new relations.
O

Lemma 4. From the commutativity relation:
T1T3 = T3T1
follow relations
_ b _ _
b12b34 = b34b12, (a341b24a34) " = a3, basazs, by braboz = by

that are relations (32), (35) and (37) of the theorem.

Proof. We can rewrite 7173 = 7371 in the form b12b34 = b34b12.
Conjugating it by o5 1 one can get the relation

1 bis -1
(a3s baaass) * = azy basass.

Conjugating the previous relation by oy ! we have

—1/ -1 -1 —1 -1
by (a34 agy b1aaz4ass) bas = a3y agy bisassass.
Take the relation

bog (a94a34) baz = a24a34.
Then we obtain
by biabas = bya.
Conjugating [b12,b34] = 1 by other representatives of A4 one can check that we
did not find new relations. O
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Hence, all relations in theorem follows from the relations of singular braid group
on 4 strands.
O

4. CENTER OF SG4

It is well-known [20] that the center Z(B,,) = Z(P,) is infinite cyclic group that

is generated by
An = (0‘10’2 e O'nfl)n = a12<a13a23) e (alnagn . an,lm).

It was shown that Z(B,,) = Z(SG,,) = Z(SP,) (see [14, 24]). M. V. Neshchadim
[21, 22] proved that Z(P,) is a direct factor in P, but its not a direct factor of B,,.
In [6] was proved that Z(SPs) is a direct factor in SPs. In this section we prove
the same result for n = 4. We will use the following notations

5k = a1kA2k - - - AQf—1,k, k :2,3,4.
Then
Ay = 520504.
Using defining relations of SP, can be proved

Lemma 5. The following formulas hold in SP,

az;'a) 6304 _ az; a7y 6364 _
(39) a1y =ay, b = b4,
a1_415354 a1_416354
(40) Aoy = a4, byf =ba

Lemma 6. For any i € {1,2} the following formulas hold in SPy

(@14024034)"" = a14024034,

bv
(a14024034)"" = 14024034
Now we are ready to prove

Theorem 2. The center Z(SG,) is a direct factor in SPy. But Z(SGy4) is not a
direct factor in SGy.

Proof. As we know SPj is generated by

aij, by, 1<i<j<A4,
and is defined by the set of relations R, which we have found in Theorem 1, i.e.
(41) SPy = (a;;, bjj, 1<i<j<4, |R).

The set of relations R is disjoint union of two subsets, R = R; U Ry, where R;
is the set of relations which contain a12 and Ry is the set of relations which do
not contain ajo. Denote by A the set of generators SP; without generator a;o and
denote by H = (A) < SP;.

Let us prove that SP, also has the following presentation

(42) SP, = <A, A4 | RQ, [A4,a] =1,a€ A>

It is enough to prove that any relation from R; follows from relations R, and
relations [Ay4,a] = 1, a € A. Any relation from R; has one of the forms:
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—1 -1 —1 -1
a2 __ @23 03 a2 __ pd23 d13
1) afy® = a1} 13" =013 )
2) a2 — aafsl porz — ba;sl.
23 — Y23 23 — VY23 >
—1 -1 —1 -1
aiz __ Gog Gy ai2 __ p4 %14,
3) af}’ = a3 1 =0y} )
4) a2 — aa’l_41 péiz — ba1_41.
24 — Y24 24 — V24 >
aiz __ a2 __
5) agi® = az bsy® = b4,

6) b]3? = bia.

Since Ay = 020304 and 62 = aqo, then a1o = A464_153_1. Using this formula, we
can remove ajo from the generating set of SPy. Hence, SPy is generated by A, A,,.
Let us show that we can remove the set of relations R; and insert the relations
[Ag,a] = 1,a € A. The first relation of the type 1) can be write in the form
—1¢—1 -1 -1
aﬁ)’454 o _ afllzs %13
The element A, lies in the center of SPy, hence
i _ a3 a55 03
ay =a .
Since 03 = aj3as3, this relation is equivalent
-1
ai% = Q13 < 5213 = 54.
The last relation is the first relation of of Lemma 6. So, we can remove the first
relation of the form 1).
By the same way, we can show that we can remove the second relation of the
form 1).
The relation of the type 2) can be rewrite as
The element Ay lies in the center of SPy, consequently

8t _ 01303
(g3 = Q3" -
This relation is equivalent
—1
A =al% e 50 =§
23 T Y23 4 — Y4

The last relation is the first relation of of Lemma 6. Hence, we can remove the first
relation of the form 2).

Analogously, one can consider the second relation of the form 2).

3) We can write this relation in the form

Agsyteyt _ axlay)
ai, =aqa .
The element A4 lies in the center of SPy, hence
54_1 _ a2_41a1_4153
a1y = Qg4 .

From the first relation of Lemma 5 follows that the left side of this relation is
equal to ai4. From the first relation of Lemma 6 follows that the right side of this
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relation is equal to a14. Hence, we can remove the first relation of the form 3). By
the same way, using the second relation of Lemma 5 and the second relation of
Lemma 6 we can show that we can remove the second relation of the form 3).
The relations of the form 4) is considered by analogy.
5) We can write this relation in the form

Ay te?t
Asy 478 — as4.

The element A4 lies in the center of SPy, then

5t 93

A3y = A3y

The last relation is equivalent
-1 —1_-1
Agyq Goy Ay

— Q13023
=azg

Using the following relations from Theorem 1:

—1 —1
a1z __ %14 a3 __ %oy az3 __
G34” = Q34 » G343 = A3y, Q14 = 14,

we get
—1

ai3a23 __ A1q 23 _ a2_41a1_41
34 = 834 = agy .
Therefore, 5) follows from the relation [A4, as4] = 1 and the relations which do not
contain ais.
6) We can write this relation in the form

—1¢—1
b = bia.
The element Ay lies in the center of SPy, then
—1¢—1
by % = bia.

Using the conjugation rules by b12 one can check
o =os, 8y =0,

i. e. 6) follows from the relation [Ay4, bi2] = 1 and the relations which do not contain

aig.
Hence, SP, has the presentation (42).
From this presentation follows that there are two epimorphisms

m : SPy — Z(SGy), m1(A4) =Ay, m(a)=1for all a € A4;
mo: SPy — H, ma(Ay) =1, ma(a) =a for all a € A.
Hence, SPy = (Z(SG4), H), the subgroup H has a presentation
H=(A| Ry)

and Z(SG4) N H = 1. We proved the first part of the theorem.

The second part of the theorem follows from the fact that there exists an
epimorphism SG4 — By and from the fact that Z(By4) is not a direct factor of
B,. 0

From this theorem we get other presentation for SP;.
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Corollary 1. The singular pure braid group SPy, on 4 strands is generated by
elements Ay, a13, ass, a14, G24, a3, b12, b13, bog, b14, bog, b34 is defined by relations:

Agc=cAy, ¢ € {a13,a23,a14, 024, a34, 012, b13, baz, b1a, baa, b3a},

— commutativity relations:

a13b13 = bizass,

ag3ba3z = bazans,

a14b14 = bi4a14,

a24b24 = bagany,

a34b3s = b34a3q,
— conjugation by ai3:

CLf;316114611:3 a14a34a14a§41af417
ajy biaais = arsazabisaz) ary,
‘11_31‘124@13 = [a;f, a§41]a24 [a3_41, a1_41],
ayybasars = [ayy, aggboalazy s ary'],

-1 -1
13 A34013 = 014034014 ,

1 21
ai3 b3sa1z = aabasary,

— conjugation by ass:

-1
Qg3 Q14023 = A14,

—1
Gog b1aGo3 = big,

—1 -1 _-1
Qg3 024023 = (24034024034 Qo4
—1 -1 -1
g3 baaaos = azaazabasazy agy,
—1 —1
Qo3 (134023 = 12403409, ,

—1 —1
Qg3 b34a23 = a24b34(l24 )

- conjugation by bio:

ble(a13a23)b12 = Q13G23,
b (a14a24)b12 = a14as4,
by azabia = aza,
by baabia = bau,

— congugation by bi3:

13 (a14a34)b13 = a14a34,
by (a34 azaass) bis = a3y azaas,
biy (34 baaass) bis = a3, basaszs.
— conjugation by bas:

1

bys a14baz = ais,
2

bys b1abaz = by,

—1
bos (a24a34)b23 = a24a34,
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