Antioxidant Activity and Phytochemicals of Locally Consumed Plant Foods from Baguio City, Philippines

Paolo Robert P. Bueno (1) , Rachel Camille R. Cabrera (2) , Gracia Fe B. Yu (3)
(1) University of the Philippines Manila , Philippines
(2) University of the Philippines Manila , Philippines
(3) University of the Philippines Manila , Philippines

Abstract

In the Philippines, Baguio City – known as the “City of Pines” – holds the country’s major source of temperate climate vegetables. With increased dietary awareness, the consumption of plant foods rich in antioxidants has become relevant. Twenty-nine methanolic extracts from Baguio-produced plant foods were evaluated for antioxidant potential using DPPH, ferric reduction antioxidant power (FRAP), metal chelation, superoxide anion, nitric oxide, hydroxyl radical scavenging activities, MTT reduction, and phytochemical tests. Fagopyrum tataricum leaves, Vaccinium myrtoides fruit, and Morus alba fruit showed the most effective DPP radical, concentration-dependent reducing power, but low metal chelating activity. Solanum tuberosum tuber (22.86±63.26%) showed effective concentration-dependent chelating activity at 125 μg/mL. Citrus aurantium fruit (26.77±9.24%) and Raphanus raphanistrum root (41.13±0.11%) demonstrated an effective scavenging activity against superoxide anions at 45.5 μg/mL. Significant nitric oxide scavenging activity was observed in some fruits. Brassica oleracea Cab leaves (54.36 ± 2.38%) showed the highest inhibitory activity against hydroxyl radicals at 166.7 μg/mL. Phytochemical analyses showed that most plant samples revealed the presence of glycosides, terpenes/terpenoids, and steroids/phytosterols, while few contained phenolic and tannin components. These phytochemicals may explain the dual behavior as an antioxidant or a prooxidant observed. Thus, determining food antioxidant component types and their concentration is necessary to maximize the potential to scavenge oxidants.

Full text article

Generated from XML file

References

1. Ponnampalam EN, Kiani A, Santhiravel S, Holman BWB, Lauridsen C, Dunshea FR. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals. 2022;12(23):3279. doi:10.3390/ani12233279
2. Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants. 2021;10(2):201. doi:10.3390/antiox10020201
3. Papuc C, Goran GV, Predescu CN, Nicorescu V. Mechanisms of Oxidative Processes in Meat and Toxicity Induced by Postprandial Degradation Products: A Review. Compr Rev Food Sci Food Saf. 2017;16(1):96-123. doi:10.1111/1541-4337.12241
4. Parcheta M, Świsłocka R, Orzechowska S, Akimowicz M, Choińska R, Lewandowski W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials. 2021;14(8):1984. doi:10.3390/ma14081984
5. Yu GFB, Cabrera RCR, Bueno PRP, Sia IC. The Antioxidant Activity of Plant Foods from Quezon Province, Philippines. Acta Med Philipp. 2020;54(2):151-60. doi:10.47895/amp.v54i2.1531
6. Cajuday LA, Membreve DMS, Serrano, JE. Evaluation of the antioxidant and anticancer activities of Canarium ovatum (Burseraceae) pulp extracts. Int J Biosci. 2017;11(3):247-56. doi:10.12692/ijb/11.3.247-256
7. Ragasa CY, Torres OB, Gutierrez JMP, Kristiansen HPB, Shen CC. Triterpenes and Acylglycerols from Canarium ovatum. J Appl Pharm Sci. 2015;5(4):94-100. doi:10.7324/japs.2015.50416
8. Morales-Soto A, García-Salas P, Rodríguez-Pérez C, Jiménez-Sánchez C, Cádiz-Gurrea MdlL, Segura-Carretero A, et al. Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Res Int. 2014;58:35–46. doi:10.1016/j.foodres.2014.01.050
9. Barcelo, R. Phytochemical Screening and Antioxidant Activity of Edible Wild Fruits in Benguet, Cordillera Administrative Region, Philippines. Electron J Bio. 2015;11(3):80-9.
10. Agoot, L. CAR contributes 1-M kilos veggies to PH food sustainability. Philippine News Agency. Available from: https://www.pna.gov.ph/articles/1136896
11. Prasad MP, Shekhar S, Amit B. Phytochemical Analysis and Antioxidant potential of Piper species and its Molecular Characterization by RAPD Markers. Int J Fundam Appl Sci. 2012;1(4):71-4.
12. Kuntal DAS, Dang R, Sivaraman G, Ellath RP. Phytochemical Screening for Various Secondary Metabolites, Antioxidant, and Anthelmintic Activity of Coscinium fenestratum Fruit Pulp: A New Biosource for Novel Drug Discovery. Turk J Pharm Sci. 2018;15(2):156-65. doi:10.4274/tjps.54376
13. Subhashini N, Thangathirupathi A, Lavanya N. Antioxidant Activity of Trigonella foenum graecum using various in vitro and ex vivo models. Int J Pharm Pharm Sci. 2011;3(2):96-102.
14. Bueno PRP, Buno CBM, Santos DL, Santiago LA. Antioxidant activity of Ficus pseudopalma Blanco and its cytotoxic effect on hepatocellular carcinoma and peripheral blood mononuclear cells. Curr Res Biol Pharma Sci. 2013;2(2):14-21.
15. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143-52. doi:10.1016/j.jsps.2012.05.002
16. Hazra B, Biswas S, Mandal N. Antioxidant, and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med. 2008;8:63. doi:10.1186/1472-6882-8-63
17. Subhadradevi S, Asokkumar K, Umamaheswari M, Sivashanmugam A, Sankaranand R. In Vitro Antioxidant Activity of Vetiveria zizanioides Root Extract. Tanzan J Health Res. 2010;12(4):276-81.
18. Liu Y, Nair MG. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds. J Nat Prod. 2010;73(7):1193-5. doi:10.1021/np1000945
19. Cornago DF, Rumbaoa RG, Geronimo IM. Philippine Yam (Dioscorea spp.) Tubers Phenolic Content and Antioxidant Capacity. Philipp J Sci. 2011;140(2):145-52.
20. Akar Z, Küçük M, Doğan H. A new colorimetric DPPH Scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem. 2017;32(1):640–7.doi:10.1080/14756366.2017.1284068
21. Adebiyi O, Olayemi FO, Ning-Hua T, Guang-Zhi Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ J Basic Appl Sci. 2017;6(1):10-4. doi:10.1016/j.bjbas.2016.12.003
22. Wajid M, Uzair M, Chaudhary BA. Phytochemical Screening Antioxidant and Alpha-glucosidase Inhibitory Activities of Fagopyrum tataricum L. Extract. J Pharm Res Int. 2017;18(6):1-6. doi:10.9734/jpri/2017/36067
23. Galvez MAC. Evaluation of DPPH Free Radical Scavenging Activity and Phytochemical Screening of Selected Folkloric Medicinal Plants in Tinoc, Ifugao, Cordillera Administrative Region, Philippines. Int J Sci Res Publ. 2015;5(12):440-5.
24. Park E, Song JH, Kim GN, Kim HO. Anti-oxidant and Anti-obese Effects of Mulberry (Morus alba L.) Leaf Extract in 3T3-L1 Cells. Korean J Aes Cosmetol. 2015;13(1):19-26.
25. Gan YZ, Azrina A. Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. Int Food Res J. 2016;23(6):2357-62.
26. Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008;108(3):1028-38. doi:10.1016/j.foodchem.2007.11.032
27. Upadhyay R, Sehwag S, Singh SP. Antioxidant Activity and Polyphenol Content of Brassica oleracea Varieties. Int J Veg Sci. 2016;22(4):353-63. doi:10.1080/19315260.2015.1048403
28. Maharana L, Kar DM, Pattnaik S, Sahu PK, Si SC. In vitro Antioxidant Activity of Aqueous Leaf Extract of Solanum nigrum L. Pharmacologyonline. 2010;3:333-45.
29. Youn JS, Kim Y-J, Na HJ, Jung HR, Song CK, Kang SY, Kim, JY. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions. Food Sci Biotechnol. 2019;28(1):201-7. doi:10.1007/s10068-018-0352-y
30. Chou ST, Chao WW, Chun YC. Antioxidative activity and safety of 50% ethanolic red bean extract (Phaseolus radiatus L. var. Aurea). J Food Sci. 2003;68(1):21-5. doi:10.1111/j.1365-2621.2003.tb14108.x
31. Mann S, Gupta D, Gupta R. Evaluation of nutritional and antioxidant potential of Indian Buckwheat grains. Indian J Tradit Knowl. 2012; 11(1):40-4.
32. Bunea A, Rugina OD, Pintea AM, Sconţa Z, Bunea CI, Socaciu C. Comparative Polyphenolic Content and Antioxidant Activities of Some Wild and Cultivated Blueberries from Romania. Not Bot Horti Agrobot Cluj Napoca. 2011;39(2):70-6. doi:10.15835/nbha3926265
33. Ranjan B, Kumar R, Verma N, Mittal S, Pakrasi PL, Kumar RV. Evaluation of the Antidiabetic Properties of S-1708 Mulberry Variety. Pharmacogn Mag. 2017;13(Suppl 2):S280–8. doi:10.4103/pm.pm_490_16
34. Subramanian R, Subbramaniyan P, Raj V. Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. Springerplus. 2013;2(1):28. doi:10.1186/2193-1801-2-28
35. Llorach R, Tomás-Barberán FA, Ferreres F. Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. J Agric Food Chem. 2004;52(16):5109-16. doi:10.1021/jf040055a
36. Gupta SP. Roles of metals in human health. MOJ Bioorg Org Chem. 2018;2(5):221-4. doi:10.15406/mojboc.2018.02.00085
37. Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955-84. doi:10.1007/s12274-018-2092-y
38. Shehta N, Kamel AE, Sobhy E, Ismail ME. Malondialdehyde and superoxide dismutase levels in patients with epilepsy: a case–control study. Egypt J Neurol Psychiatry Neurosurg, 2022;58:51. doi:10.1186/s41983-022-00479-5
39. Flora SJS, Pachauri V. Chelation in Metal Intoxication. Int J Environ Res Public Health. 2010;7(7):2745–88. doi:10.3390/ijerph7072745
40. Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem. 2009;1(9):1643–70. doi:10.4155/fmc.09.121
41. Shubina VS, Shatalin YV. Antioxidant and iron-chelating properties of taxifolin and its condensation product with glyoxylic acid. J Food Sci Technol. 2017;54(6):1467-75. doi:10.1007/s13197-017-2573-0
42. Rumbaoa RG, Cornago DF, Geronimo I. Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. J Food Compos Anal. 2009;22(6):546-50. doi:10.1016/j.jfca.2008.11.004
43. Lee SH, Oh SH, Hwang IG, Kim HY, Woo KS, Woo, SH, et al. Antioxidant Contents and Antioxidant Activities of White and Colored Potatoes (Solanum tuberosum L.). Prev Nutr Food Sci. 2016;21(2):110–6. doi:10.3746/pnf.2016.21.2.110
44. Patel R, Rinker L, Peng J, Chilian WM. Reactive Oxygen Species: The Good and the Bad. In: Filip C, Albu E, editors. Reactive Oxygen Species (ROS) in Living Cells. London, UK: IntechOpen; 2017. doi:10.5772/intechopen.71547
45. Dayem AA, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, et al. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int J Mol Sci. 2017;18(1):120. doi:10.3390/ijms18010120
46. Jha N, Ryu JJ, Choi EH, Kaushik NK. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry. Oxid Med Cell Longev. 2017;2017:7542540. doi:10.1155/2017/7542540
47. Kaur P, Arora S. Superoxide anion radical scavenging activity of Cassia siamea and Cassia javanica. Med Chem Res. 2011;20:9–15. doi:10.1007/s00044-009-9274-9
48. Santiago LA, Mayor AB. Prooxidant Effect of the Crude Ethanolic Leaf Extract of Ficus odorata Blanco Merr. In Vitro: Its Medical Significance. Int J Biotechnol Bioeng. 2014;8(1):53-60.
49. Yang C, Hwang HH, Jeong S, Seo D, Jeong Y, Lee DY, et al. Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. Int J Nanomedicine, 2018;13:6517–30. doi:10.2147/IJN.S174989
50. Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li PL, et al. Role of Nitric Oxide in the Cardiovascular and Renal Systems. Int J Mol Sci. 2018;19(9):2605. doi:10.3390/ijms19092605
51. Yu B, Ichinose F, Bloch DB, Zapol WM. Inhaled nitric oxide. Br J Pharmacol. 2019;176(2):246–55. doi:10.1111/bph.14512
52. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 2018;115(23):5839-48. doi:10.1073/pnas.1804932115
53. Lalhminghlui K, Jagetia GC. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Sci OA. 2018;4(2):FSO272. doi:10.4155/fsoa-2017-0086
54. Lipinski B, Pretorius E. Hydroxyl Radical-Modified Fibrinogen as a Marker of Thrombosis: The Role of Iron. Hematology. 2012;17(4):241-7. doi:10.1179/1607845412Y.0000000004
55. Zdravković JM, Aćamović-Djoković GS, Mladenović JD, Pavlović RM, Zdravković MS. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce. Hem Ind. 2014;68(2):193–8. doi:10.2298/hemind130222043z
56. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015;20(12):21138-56. doi:10.3390/molecules201219753
57. Lee MT, Lin WC, Yu B, Lee, TT. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals - A review. Asian-Australas J Anim Sci. 2017;30(3):299–308. doi:10.5713/ajas.16.0438
58. Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6(2):466–88. doi:10.3390/nu6020466
59. Setyorini D. Terpenoids: Lycopene in Tomatoes. In: Perveen S, Al-Taweel AM, editors. Terpenes and Terpenoids. London, UK: IntechOpen; 2021. doi:10.5772/intechopen.97126
60. Yin TP, Cai L, Xing Y, Yu J, Li XJ, Mei RF, et al. Alkaloids with antioxidant activities from Aconitum handelianum. J Asian Nat Prod Res. 2016;18(6):603‐10. doi:10.1080/10286020.2015.1114473
61. Nafiu MO, Ashafa AOT. Antioxidant and inhibitory effects of saponin extracts from Dianthus basuticus Burtt Davy on key enzymes implicated in type 2 diabetes In vitro. Pharmacogn Mag. 2017;13(52):576-82. doi:10.4103/pm.pm_583_16
62. Chedea VS, Tomoiagǎ LL, Macovei ŞO, Mǎgureanu DC, Iliescu ML, Bocsan IC, et al. Antioxidant/Pro-Oxidant Actions of Polyphenols from Grapevine and Wine By-Products-Base for Complementary Therapy in Ischemic Heart Diseases. Front Cardiovasc Med. 2021;8:750508. doi:10.3389/fcvm.2021.750508
63. Balea SS, Pârvu AE, Pârvu M, Vlase L, Dehelean CA, Pop TI. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of the Vitis vinifera L. var. Fetească Neagră and Pinot Noir Pomace Extracts. Front Pharmacol. 2020;11:990. doi:10.3389/fphar.2020.00990
64. Eghbaliferiz S, Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother Res. 2016;30(9):1379-91. doi:10.1002/ptr.5643

Authors

Paolo Robert P. Bueno
ppbueno@up.edu.ph (Primary Contact)
Rachel Camille R. Cabrera
Gracia Fe B. Yu
Author Biographies

Paolo Robert P. Bueno, University of the Philippines Manila

Natural Products Laboratory, Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, National Capital Region, Philippines

Rachel Camille R. Cabrera, University of the Philippines Manila

Natural Products Laboratory, Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, National Capital Region, Philippines

Gracia Fe B. Yu, University of the Philippines Manila

Natural Products Laboratory, Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, National Capital Region, Philippines

1.
Bueno PRP, Cabrera RCR, Yu GFB. Antioxidant Activity and Phytochemicals of Locally Consumed Plant Foods from Baguio City, Philippines. Borneo J Pharm [Internet]. 2023May31 [cited 2024Apr.29];6(2):190-207. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/4546

Article Details