초록

Although monopiles for wind turbines are mostly used worldwide due to cost efficiency and simple construction, it has not been applied to the seabed around Korea. However, as heavy machines for offshore structure installation have recently been improved, the application of a monopile foundation is being tried. Unlike in Europe, most offshore piles are conventionally penetrated into good rock without a clear background and standards in Korea, and the design of a wind turbine monopile in the Korean seabed hasn’t been undertaken. For this reason, this study dealt with the structural analysis of offshore XL (very large) monopiles for a 5.5 MW wind turbine considering pile-soil interaction in the Korean seabed. Structural behaviors of monopiles were numerically investigated for several penetration depths and load conditions using frame-spring models. The results show that the monopile can provide sufficient bearing capacity and good serviceability when its tip is penetrated into weak rock, while other cases do not satisfy serviceability due to excessive lateral displacements at the end.

키워드

대구경 모노파일, 지반-구조 상호작용, 한국해저지반, 관입깊이, 구조해석, 프레임- 스프링모델

참고문헌(38)open

  1. [보고서] Korea Wind Energy Association(KWEA) / 2018 / Korea Energy Association 2018 Techincal Report : State of Domestic and Global Wind Energy Power Industry and Technical Development : 11 ~ 13

  2. [학술지] Darvishi-Alamouti, S. / 2017 / Natural frequency of offshore wind trubines on rigid and flexible monopiles in cohesionless soils with linear stiffness distribution / Applied Ocean Research 68 : 91 ~ 102

  3. [기타] Det Norske Veritas (DNV) / 2014 / Offshore Standard DNV-OS-J101 Design of Offshore Wind Turbine Structures

  4. [인터넷자료] Bloomberg / Wind Farm Double Size of Manhattan Unveiled in Irish Sea

  5. [학술지] Ryu, M. S. / 2011 / A Suggestion for the Foundation Type of Offshore Wind Turbine in the Test Bed on the Basis of Economic and Consturctibility Analysis / Journal of Wind Energy 2 (1) : 44 ~ 52

  6. [보고서] Korea Institute of Civil Engineering and Building Technology(KICT) / 2015 / Development of the Large Diameter Monopile Construction System for Shallow Sea: Subsection 1

  7. [보고서] Korea Institute of Civil Engineering and Building Technology(KICT) / 2015 / Development of the Large Diameter Monopile Construction System for Shallow Sea: Subsection 2

  8. [보고서] Korea Agency for Infrastructure Technology Advancement(KAIA) / Smart Innovation R&D:the top 20 Technologies of Construction and Transportation

  9. [학술지] 김범준 / 2017 / 지반-파일 상호작용을 고려한 PS 콘크리트 해상풍력 구조물의 거동 해석 / 풍력에너지저널 8 (1) : 16 ~ 25

  10. [학술지] 경갑수 / 2018 / 고정식 자켓구조물의 기하형상 조건에 따른 구조거동특성 / 한국강구조학회 논문집 30 (3) : 163 ~ 173

  11. [학술지] 김동준 / 2013 / 해상풍력 모노포드 버켓기초의 지지력 거동 – 원심모형실험 및 수치해석 / 한국지반공학회논문집 29 (4) : 23 ~ 32

  12. [학술지] 김우석 / 2016 / 5MW 해상풍력타워를 위한 콘크리트 지지구조물의 내진해석 / 한국전산구조공학회논문집 29 (3) : 209 ~ 218

  13. [학술지] 선민영 / 2014 / 5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구 / 한국마린엔지니어링학회지 38 (9) : 1075 ~ 1080

  14. [학술지] Li, S. / 2019 / Drainage Conditions around Monopiles in Sand / Applied Ocean Research 86 : 111 ~ 116

  15. [학위논문] Duan, N. / 2016 / Mechanical Characteristics of Monopile Foundation in Sand for Offshore Wind Turbine

  16. [학술지] Liu, R. / 2016 / Behavior of Monopile Foundations for Offshore Wind Farms in Sand / Journal of Waterway, Port, Coastal, and Ocean Engineering 142 (1) : 04015010

  17. [보고서] Leite, O. B. / 2015 / Review of Design Procedures for Monopile Offshore Wind Structures : 80 ~ 107

  18. [학술대회] Abdel-Rahman, K. / 2005 / Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in Germany / Proceedings of the International Symposium on Frontiers in Offshore Geotechnics : 391 ~ 396

  19. [학술지] 이진학 / 2015 / 지반과 말뚝의 상호작용을 고려한고정식 해상풍력터빈의 동적 특성에 대한 확률적 평가 / 한국전산구조공학회논문집 28 (4) : 343 ~ 350

  20. [보고서] Det Norske Veritas and Germanischer Lloyd(DNVGL) / 2016 / DNVGL-ST-0126 : Support Structures for Wind Turbines

  21. [보고서] Ministry of Land, Infrastructure and Transport (MOLIT) / 2016 / Deep Foundation Design Standard: Limit State Design

  22. [학술지] Kwon, O. S. / 2013 / Case study on grouting at the end tip of large cast-in-place pile penetrated into weathered rock / Daelim Technical Review : 38 ~ 44

  23. [학술지] 김기하 / 2015 / FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈시스템 설계하중조건 해석 및 비교 / 한국유체기계학회 논문집 18 (2) : 14 ~ 21

  24. [보고서] KEPRI / 2013 / Test Bed for 2.5GW Offshore Wind Farm at Yellow Sea Interim Design Basis Report

  25. [보고서] American Petroleum Institute(API) / 1989 / Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms, Vol.2

  26. [학술지] Byrne, B. W. / 2019 / PISA: New Design Methods for Offshore Wind Turbine Monopiles / Revue Française de Géotechnique 158 (3) : 142 ~ 161

  27. [학술지] 김남형 / 2013 / 해상 풍력 타워의 모노파일 기초에 대한 다층 지반 해석 / 한국항해항만학회지 37 (6) : 655 ~ 662

  28. [학술지] 장영은 / 2014 / 지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석 / 한국지반환경공학회 논문집 15 (9) : 47 ~ 58

  29. [학술지] 정성문 / 2014 / 해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향 / 한국지반신소재학회 논문집 13 (4) : 21 ~ 31

  30. [학술대회] Njomo Wandji, W. / 2015 / Design of Monopiles for Multi-megawatt Wind Turbines at 50m Water Depth / EWEA Annual Conference and Exhibition : 8 ~ 12

  31. [학술지] Byrne, B. W. / 2003 / Foundations for Offshore Wind Turbine / Phil. Trans. R. Soc. Lond. A 361 : 2909 ~ 2930

  32. [학술지] Lyu, G. / 2019 / Effects of Incident Wind/Wave Directions on Dynamic Response of a SPAR-type Floating Offshore Wind Turbine System / Acta Mechanicq Sinica 35 : 954 ~ 963

  33. [학술지] 이상근 / 2015 / 해양환경하중 및 지반의 불확실성을 고려한 중력식 해상풍력 기초의 신뢰성 해석 / 한국해양공학회지 29 (5) : 359 ~ 365

  34. [인터넷자료] Chivato, R. / Wave and Wind Loads

  35. [학술지] 조용준 / 2015 / 해상 풍력발전체에 작용하는 풍하중과 파랑하중간의 비선형 상쇄간섭 해석 -수리모형실험을 중심으로 / 한국해안·해양공학회논문집 27 (5) : 281 ~ 294

  36. [학술지] Srikanth, I. / 2017 / Simplified Design Procedure of Monopile Foundation for Offshore Wind Turbine in Gujarat, India / Journal of Shipping and Ocean Engineering 4 : 133 ~ 152

  37. [단행본] Anaya-Lara, O. / 2018 / Offshore Wind Energy Technology / Weily : 125 ~ 132

  38. [보고서] Ministry of Land, Infrastructure and Transport (MOLIT) / 2016 / Steel Structure Design Standard: Allowable Stress Design