Skip to main content
Log in

Thermoelectric properties of InzCo4Sb12 skutterudites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, indium-filled CoSb3 skutterudite is synthesized via encapsulated induction melting and subsequent annealing at 823 K for six days, and the crystal structure, lattice constant, filler position, phase homogeneity and stability were investigated. All of the In-filled CoSb3 samples were n-type conducting samples. The temperature dependence of the electrical resistivity showed InzCo4Sb12 is a highly degenerate semiconducting material. The thermal conductivity was reduced considerably by In filling. The highest thermoelectric figure of merit value was achieved when the In filling fraction is 0.25. It was found that the ZT of the In-filled CoSb3 (InzCo4Sb12) was higher than that of the In-substituted CoSb3 (Co3.75In0.25Sb12 and Co4Sb11.75In0.25). This is mainly due to the lower thermal conductivity and higher Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, CRC Handbook of Thermoelectrics (ed., D. M. Rowe), p. 19, CRC Press, Boca Raton, FL (1995).

    Google Scholar 

  2. G. A. Slack, CRC Handbook of Thermoelectrics (ed., D. M. Rowe), p. 407, CRC Press, Boca Raton, FL (1995).

    Google Scholar 

  3. W. Jeitschko and D. J. Braun, Acta crystallogr. B 33, 3401 (1977).

    Article  Google Scholar 

  4. D. J. Braun, W. Jeitschko, J. Less-Common Met. 72, 147 (1980).

    Article  CAS  Google Scholar 

  5. G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg, and D. C. Johnson, Appl. Phys. Lett. 77, 52 (2000).

    Article  ADS  CAS  Google Scholar 

  6. T. He, J. Chen, H. D. Rosenfeld, and M. A. Subramanian, Chem. Mater. 18, 759 (2006).

    Article  CAS  Google Scholar 

  7. D. T. Morelli and G. P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  ADS  CAS  Google Scholar 

  8. D. Mandrus, A. Migliori, T. W. Darling, M. F. Hundley, E. J. Peterson, and J. D. Thompson, Phys. Rev. B 52, 4926 (1995).

    Article  ADS  CAS  Google Scholar 

  9. K. T. Wojciechowski, Mater. Res. Bull. 37, 2023 (2002).

    Article  CAS  Google Scholar 

  10. I.-H. Kim and S.-C. Ur, Met. Mater.-Int. 13, 53 (2007).

    Article  CAS  Google Scholar 

  11. X. Y. Li, L. D. Chen, J. F. Fan, W. B. Zhang, T. Kawahara, and T. Hirai, J. Appl. Phys. 98, 83702 (2005).

    Article  CAS  Google Scholar 

  12. Z. Zhou, C. Uher, A. Jewell, and T. Caillat, Phys. Rev. B 71, 235209 (2005).

    Article  ADS  CAS  Google Scholar 

  13. X. Tang, L. M. Zhang, R. Z. Yuan, L. D. Chen, T. Goto, T. Hirai, J. S. Dyck, W. Chen, and C. Uher, J. Mater. Res. 16, 3343 (2001).

    Article  ADS  CAS  Google Scholar 

  14. J. P. Fleurial, A. Borshchevsky, T. Caillat, D. T. Morelli, and G. P. Meisner, Proc. 15 th Int. Conf. Thermoelectrics, (ed., J. P. Fleurial), p. 91, IEEE, Pasadena, CA, USA (1996).

    Chapter  Google Scholar 

  15. X. Shi, W. Zhang, L. D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  16. X. F. Tang, L. D. Chen, T. Goto, T. Hirai, and R. Z. Yuan, J. Mater. Sci. 36, 5435 (2001).

    Article  CAS  Google Scholar 

  17. K. Akai, H. Kurisu, T. Moriyama, S. Yamamoto, and M. Matsuura, Proc. 17 th Int. Conf. Thermoelectrics, (ed., K. Koumoto), p. 105, IEEE, Nagoya, Japan (1998).

    Google Scholar 

  18. J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).

    Article  ADS  CAS  Google Scholar 

  19. M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek, J. Appl. Phys. 97, 83712 (2005).

    Article  CAS  Google Scholar 

  20. D. T. Morelli, G. P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  ADS  CAS  Google Scholar 

  21. G. A. Lamberton, Jr., S. Bhattacharya, R. T. Littleton IV, M. A. Kaeser, R. H. Tedstrom, T. M. Tritt, J. Yang, and G. S. Nolas, Appl. Phys. Lett. 80, 598 (2002).

    Article  ADS  CAS  Google Scholar 

  22. G. S. Nolas, J. L. Cohn, and G. A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  ADS  CAS  Google Scholar 

  23. B. C. Sales, B. C. Chakoumakos, and D. Mandrus, Phys. Rev. B 61, 2475 (2000).

    Article  ADS  CAS  Google Scholar 

  24. G. S. Nolas, J. L. Cohn, and G. A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  ADS  CAS  Google Scholar 

  25. G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).

    Article  ADS  CAS  Google Scholar 

  26. L. D. Chen, T. Kawahara, X. F. Tang, T. Goto, T. Hirai, J. S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallik, R.C., Jung, JY., Ur, SC. et al. Thermoelectric properties of InzCo4Sb12 skutterudites. Met. Mater. Int. 14, 223–228 (2008). https://doi.org/10.3365/met.mat.2008.04.223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.04.223

Keywords

Navigation