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Flexible Functional Forms and Global Curvature Conditions

by W.E. Diewert and T.J. Wales¥*

l. Introduction

One of the most vexing problems applied economists have encountered in
estimating flexible functional forms! in the production or consumer context is
that the theoretical curvature conditions (concavity, convexity or quasicon-
vexityg) that are implied by economic theory are frequently not satisfied by the
estimated cost, profit or indirect utility function. This problem has not gone
unnoticed. Wales [197T], Christensen and Caves [1980] and Barrett and Lee
[1984] have compared various flexible functional forms with respect to their
regions in a parameter space where curvature conditions are satisfied. Lau
[1978b) and Gallant and Golubd ]1984] have developed numerical methods for
jmposing curvature conditions locally, but these methods do not always yield
satisfactory results in practice.3 Moreover, for some purposes,)1t it is
necessary to have estimated functional forms that satisfy globally the curvature
conditions imposed by economic theory.

The primary purpose of this paper is to suggest and empirically test
methods for imposing curvature conditions globally in the context of cost func-
tion estimation. We suggest two methods. The first method is explained in sec-
tion 4 and is an adaptation of the techniques developed by McFadden [1978] and
Lau [1978b]. The second method modifies the results of Barrett [1983] and is

explained in section 5. We use the U,S. Manufacturing data utilized by Berndt

and Xhaled [1979] in order to test out empirically our new functional forms.



P

We also estimate translog and Generalized Leontief cost functions in
order to compare our new functional forms with traditional flexible funciional
forms for cost functions. When comparing the various functional forms, we place
some emphasis on obtaining stable estimates for various elasticities of demand
since recent research’ has indicated that flexible forms do not always generate
empirically credible elasticity estimates.

In our empirical work, we maintain the hypothesis that the cost function
is linearly homogeneous in prices. We also maintain the cross eguation symmetry
restrictions that occur in the various models. Thus we use economic theory to
"well order" the economic universe to the greatest possible extent a priori.
However, we do want our functional forms to be flexible not only with respect to
input prices, but also with respect to ocutput and time (or any exogenous indica-
tor of "technical progress" such as a constant dollar stock of research and
development expenditures). Thus we want to allow for arbitrary returns to scale
and technical progress {to the second order) in our cost functions. In our four
functional forms for cost functions, we allow second order flexibility in input
prices, ocutput and time under the maintained hypothesis of linear homogeneity in
prices. Our functional forms can then be further restricted but yet still
flexible under the additional maintained hypotheses of: (i) constant returns to
scale in production, (ii) no technical progress so that the cost function does
not depend on time and (iii) the conjunction of (i) and (ii). 1In section 2, we
develop the necessary algebra for the translog functional formb while section 3

deals with the Generalized Leontief case.



2. The Translog Cost Function

Suppose that the technology of a firm can be represented by the produc-
X t¥* . _ ot* - T
tion function f~ in period t where y = f (xl,xe,,..,xN), X = (xl,x2,...,xN)

is the vector of inputs utilized and y is the maximal output that can be pro-

duced using this input vector in period t. Given a positive vector of input

prices, p = (pl,pg,...,pN)T >> ON’ the period t cost function C¥ dual to the

]
production function f may be defined as follows:

T t*
(1) C*(p,y,t) = minx{p xt £ (x) >y, x> oN}.

C* will satisfy various regularity conditions depending on what assump-
tions we place on the production function £t (see Shephard [1953] or Diewert
[1971] [1974] for examples of regularity conditions) but for our purposes, the
most important conditions are: C¥* is a linearly homogeneous and concave func-
tion in the input prices p. Let p¥* >> ON,y* > 0 and t¥ > 0 and let C* be twice
continuously differentiable with respect to its N+2 arguments at (p*,y*,t¥).
Then the linear homogeneity property of C*¥ in p and Euler's Theorem on homoge-
neous functions implies the following N+3 restrictions on the first and second

derivatives of C¥;

*7
(2) P VpC*(p*,y*,t*) = C¥(p*,y¥,t*),

¥ 2
P VPPC*(p*,y*,t*)

(3)

1§
=]

*
(%) o TprC*(p*,y*,t*) = VYC*(p*,y*,t*) = C*(p*,y*,t*)/dy, and
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T

*
(5) ) VitC*(p*,Y*,t*) = VtC*(P*,y*,t*) = oC*{p*,Yy¥*, t¥*)/3t

where VpC* denotes the column vector of the first order partial derivatives of
C¥ with respect to the components of p and Vipc* denotes the N by N matrix of
second order partial derivatives of C* with respect to the components of p.

The twice continuous differentiability assumption on C* and Young's
Theorem in calculus implies the following (N+2)(N+1)/2 symmetry restrictions on

the second order derivatives of C¥*:
2 2 T
(6) VEok(pR,y*,t*) = [VOCR(p*,y%,t%)]

2
where V0% denotes the N+2 by N+2 matrix of second order partial derivatives of
C* with respect to all of its N+2 arguments, (pl,...,pN,y,t).

Finally, the concavity in prices property implies

2
(1) Vppc*(p*,y*,t*) is a negative semidefinite matrix.

Diewert [197L4;113] defined a flexible functional form for a cost function
as one which could provide a second order differential apprcx:‘una.’c,ion'-r to an

arbitrary twice continuously differentiable cost function that satisfies the
linear homogeneity in prices property. Thus a twice continuously differentiable
cost function at the point (p*,y*,t*), Clp,y,t) say, is flexible if and only if
it contains enough free parameters so that the following 1 + (N+2) + (N+2)2
equations can be satisfied:

(8) C(p*,y*,t*) = C*(p*,y*,t*)

VC(p¥*,y*,t*) = VC*(p*,y¥*,t*) and

2
VQC(p*,y*,t*) = V C*(p*,y¥,t¥*)
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Hence the level, all N+2 first derivatives and all (N+2)2 second order partial
derivatives of C and C* coincide at (p*,y*,t*).

If we impose linear homogeneity in prices on our candidate function for
flexibility C, then C will also satisfy the N + 3 +(N + 2)(N + 1)/2 restrictions
(2) - (). Hence in order to be flexible, C must contain at least
)2

1+ W +2)+ (N +2) = [N+3+(N+2){¥+1)/2] =NN+ 1)/2 + 2§ + 3 free

parameters.

Now we are ready to define the translog cost function C:

_ N
(9) tn Clp,y,t) = a_ + Loy 3340 p; + ayln y+act

0O 1
N N N N
+
+ (1/2) zi=1 £j=l aijln pikn P + zi=1 aiyZn pAn y Ei=1 aittzn Py
2 .
+ (1/2) a_ %n yin y + ayttln y + (1/2) R 855 = 254 for all i,J.

Necessary and sufficient conditions insuring that C is linearly homogeneous in

input prices are:

N 3 f—4 - — - —
(10) Ei a. - l, Z a.. - O, 1 = 1,00.,N Y zj_:l a-iy - 0, z.___l ait - Oc

C defined by (9) and (10) has N{N + 1)/2 + 2N + 3 free parameters, just
enough to be a flexible functional form in the class of linearly homogeneous in
p cost functions. 1In fact, we have:

Theorem 1 (Woodland [1976;73), Khaled [1978;15]): The translog cost function C
defined by (9) and (10) is a flexible (homogeneous in p) functional form.

By Shephard's [1953;11] Lemma, the firm's system of cost minimizing
input demand functions, x{p,y,t) = [xl(p,y,t),...,xN(p,y,t)]T, may be obtained

by differentiating the cost function with respect to input prices; i.e., we have
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{(11)  x(p,vy,t) = VpC(p,y,t).

Define the ith input share function by si(p,y,t) z pixi(p,y,t)/c(p,y,t)
for i = 1,2,...,8. If we differentiate (9) with respect to &n p; and apply (11),

we obtain the following system of input share equations:

N o
(12) si(p,y,t) =a, + Ej=l a, . &n P, + aiyin yoragt 1= 1.1

i3 t

We now consider various interesting special cases of the general translog
cost function defined by (9) and (10).

In order to make C defined by (9) and (10) linearly homogeneous in output
y (so that the dual production function exhibits constant returns to scale), we

need only impose the following N+2 additional linear restrictions:

i
(@]
[

9
(13) a, = 1l ya, =0,1i=1,2,.0.,8-1 ; a = 0.

iy ¥y > Oyt
It can be shown that C defined by (9), (10) and (13) is a flexible functional
form for arbitrary twice continuously differentiable cost functions C¥* that are
separately linearly homogeneous in p and y.
In order to mke C defined by (9) and {10) independent of time t (so
that the dual production function does not exhibit any technical progress or

regress), we need only impose the following additional N+2 linear restrictions:

10

(1) a, =0 a,, =0, 1 =1,2,e0e,N-1 ;a2 =0

t it vt 3 agy = 0.

Woodland [1976;25] indicated that C defined by (9), (10) and (1k) is a
flexible functional form for arbitrary cost functions C* that are homogeneous 1in

p and independent of t.

Finally, if we wish to test the hypothesis that the techneclogy is subject
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to constant returns to scale and subject to no technical progress, we need to

test the validity of the following 2N+3 linear restrictions:

(15) B, = 1;a = 0 ; 8y = 0,1 = 1,e00,8-1 ;8 =0,1i=1,...,81;
ayt =0 3 a.tt = Q.

In our empirical work, we compute the following elasticities involving

the estimated cost function C defined by (9) and (10):

(16) e’ = 3tn C(pt, yt,t)lat, t = 1,2,44+,T in all cases,

I

™
1t

t t
32n Clp ,y ,t)/9%n y,

m
1l

t %
= 9fn xi(p ¥ ,t)lat, i ls2="'aN’

Z 3&n xi(pt,yt,t)laln y, 1=1,2,.4.,N, and

M
1]

o™
|

t .t
2 3&n xi(p N 9t)/a£n Pj’ i’J = 1a2s""Na

t t t t
where xi(p v .ty = aclp L,y ,t)lapi for i = 1,2,...,N is our estimated ith input

t . . .
demand function. et is the pericd t percentage change in total cost due to

technical progress (if E:

percentage change in total cost due to a one percent change in output (if E; <1,

t
> 0, there is technical regress); ey is the period t

then the dual production function exhibits locally increasing returns to scale
11

t
in peried t ); if e

N < 0, then technical change is biased towards input 1

T . s . .
in period t, i.e., it is input i saving; if eiy < 1, then input i is an inferior
t t .
input in period i while if Eiy > 1, then input i is normal, and finally eij is

the ordinary elasticity of demand for input i with respect to the price of input

j (if the concavity property (7) is satisfied, Egi < 0 for all i and t).
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3. The Generalized Leontief Cost Function

Consider the following functional form for a cost function:

_ N N 1/2 1/2 N N
(A1) Clpy,e) = 5 Liaq P34P;y Py ¥+ Iiy bypy + Loy bty
N N 2 N 2
LTI IR0 S SR T AL RS TP LS

with bij = bji’i’J = 1,2,..s,8. Note that C defined by (17) is linearly
homogeneous in input prices p and it has N(N + 1)/2 + 2N + 3 independent b
parameters, just the right number to be a flexible functional form. The first
set of N(N + 1)/2 independent terms on the right hand side of (17) correspond to
the Generalized Leontief cost function for a constant returns to scale tech-
nology with no technological progréss (see Diewert [1971;497]). The ith input

demand function corresponding to (17) can be obtained by differentiating C with

respect to p, (recall Shephard's Lemma, (11)):
i

N -1/2 1/2

(18) xi(p,y,t)EE b

1=1 P4yP; Py Y by v Bty + D

2 2
AL A AL

i=1,2,...,N.

We now address the issue of the flexibility of the Generalized Leontief

Cost function defined by (17). We assume that N » 3 throughout this paper.
Theorem 2: C defined by (17) is a flexible (homogeneous in p) cost function.

Proof: Let p¥ >> ON,y* > 0 and t* > 0 be given. Suppose C¥ is twice
continuously differentiable at (p*,y*,t*) and is linearly homogeneous in p. We
need to show that C defined by (17) can satisfy the 1 + (N + 2) + (N + 2)2

equations listed in (8). 1In what follows, it is understood that the functions
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C and C* are both evaluated at (p*,y¥,t*). Step l. Use the equations

2
agc/apiapj =9 C*/Bpiap for i # J to solve for the b, for 1% J.

J J
Step 2. Determine btt by solving 320/8t2 = 320*/8y2. Step 3. Determine btt
by solving 320/3t2 = 320*/3t2. Step 4. Consider the following system of N + 1
similtaneous equations involving bt and the N bit: aec/ayat = 32C*/3yat and
BEClapiBt = 320*/3piat, i=1,4es,N. The coefficient matrix involving bt
and the bit is nonsingular if y* > 0 and p* >> ON’ so these equations determine
bt and the bit' Step 5. Use the N eguations Viyc = Vin* to solve for bii’
i=1,...,8. Step 6. Use the N equations VPC = VpC* to solve for the
b, {1 =1,...,8. This determines all of the parameters in (17) uniquely. By
construction, most of the equations in (8) are now satisfied. The remaining
equations in (8) turn out to be satisfied because both C and C¥* satisfy the
restrictions (2) - (6). Q.E.D.

Tt can readily be seen that C defined by {17) will be linearly

homogeneous in y if and only if the following N + 2 additional linear

restrictions on the o parameters are satisfied.

(19) b, = 0,i =1,...,0 5 b = 0 ; bw = 0.
Theorem 3: C defined by (17) and (19) is a flexible homogeneous in p and y

cost function.

Proof: If C* is linearly homogeneous in y, so that C¥(p,y,t) = yC*(p,1,t) for
y > 0, then C* satisfies the following N + 2 restrictions in addition to the

restrictions (2) - (6):
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2
(20) prc*(P*’y*’t*)y* = VPC*(p*’y*’t*)’

2

(21) Vin*(p*,y*,t*) =9 C*(p*,y*,t*)/3y2 0, and

HI

(22) Vsyc*(p*,y*,t*)y* = VtC*(p*,y*,t*) BC*(p*,y*,t*)/Bt.

(=]

Now follow Step 1 in the proof of Theorem

2
t

V2 == v2 * 3
ptc ptC to determine bit

V§C = VPC* to determine bii for i = 1,...,N. This determines all of the

to determine the bij for i % j.
Step 2. Use Vitc =V tC* to determine btt' Step 3. Use the N equations

for i =1,...,8§. Step 4. Use the N equations

parameters in (17) subject to the restrictions (19) uniquely. The equations in
(8) that are not satisfied by construction turn out to be satisfied because C
and C* satisfy the restrictions (2) - (6) and (20) - (22). Q.E.D.

It can be verified that C defined by (17) will not depend on time t if

and only if the following N + 2 linear restrictions on the b parameters are

satisfied:

(23) bit=0’ i=1,..0,N ;bt=0 ;btt=0-

Theorem 4: C defined by (17) and (23) is a flexible homogeneous in p cost

function in the class of cost functions that do not depend on time.

Proof: If C*(p,y,t) does not depend on time, then C* satisfies the following

N+2 restrictions in addition to the restrictions (2) - (6):

2 2 2
* = . * % % * = . ¥* * *®+ % = .
(2h) VL% (p¥,y*,1%) = 0y 5 (25) Vp c*{p*,y*,t¥) = 0 ; (26) T C*(p¥,y*t*) = 0

2 2 .
Step 1. Use the equations 3 C/apiapj = 9 C*/BpiapJ to determine the parameters

2 2
b,, for i#¥j. Step 2. Use V_C =V C*¥ to determine b . ©Ste . Use the N
i ! ¥y Yy yy' =22
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equations ngc = Vin* to determine bi for 1 = 1,...,N. Step 4. Use the N
equations VpC = VPC* to determine bi for i = 1,...,N. This determines all of
perameters in (17) subject to the restrictions (23) uniquely., The equations
in (8) that are not satisfied by construction turn out to be satisfied because
both C and C* satisfy the restrictions (2) - (6) and (2L) - (26). Q.E.D.
Theorems 2-4 are analogous to some theorems stated by Woodland [1976;
25 and Th).12
Finally, it may be verified that the Generalized Leontief cost function
defined by (17) will be linearly homogeneous in y and independent of time if and
only if the following 2N+3 linear restrictions are satisfied:

(25) b,. =0,1 =1,...,8 3 b

" =0,i=1,0..,N3Db,=03;b_ =03Db,_ =0,

i t vy tt

Diewert [19T1; 506] showed that the cost function defined by (17) and (25) is

flexible in the class of homogeneous in p, homogeneous in y and independent

of t cost functions.

4. A Generalized McFadden Cost Function

Consider the following functional form for a cost function:

1 1 N N N
(26} co(poy,t) = g (ply + 2y ybyyPey + By ByPy * By Py Py W
N N 2 N 2
+ o (B e )t + o (T p )y + b (gm0t Y

1
where the function g 1is defined by

1 -1 _N N .
(27) g (p) = (1p/2) 3 Lo Ej=2 ¢;4P;Py where iy = Cy4 for 2 <& 1,3 < N,

There are N(N - 1)/2 independent c,, parameters and 3N + 3 additional b

1]
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parameters or N(N + 1}/2 + 2N + 3 parameters in all for ¢t Note that the terms

involving b's in (26) also occur in the Generalized Leontief form C defined

by (1T): the only difference is that the terms N N 1/2 1/2

i=1 Tj=1,i#g PigPp Py v in (0T)

are replaced by the terms involved in the definition of gl(p). All of the terms

involving b's in (26) are linear in input prices and hence they will not appear
1

in the Hessian matrix of C with respect to p; in fact, we have VipC {p,¥,t) =

21
vppg (p)y. Note also that input 1 plays an asymmetric role in the definitions

of gl (and hence Cl); this is why we have indexed Cl and gl with a superscript
1. Finally, note that C1 is linearly homogeneocus in p.

Input demand functions for Cl,xi(p,y,t) say, may be obtained via
Shephard's Lemma (11):

2 2
t + byyy + b .t y;i = 1,esa,N

1 1
{(28) xi(p,y,t) = yoig (p)/api + biiy + bi + bitty + b ot

t
where

-2_N N

- (1/2) p, T, Zi_p C3yP3Py and

(29)  2g (p)/9p,

ZN -1
j=2 “13P1 Py

1
3g (p)/3p, for i = 2,3,.4..,N.

1
The matrix of second order partial derivatives of C with respect

to input prices is

[ -3.7..  -2.7-
p, pCp,-p, PC
1 2 1 1 1
(30) vipc (p,y,t) = Vppg (p) = D 1.
-?C,pC

-T

where p

E[p2,p ,...,pN] and C is the N-1 by N-1 matrix of ¢, 's.

3
Using (30), it can be verified that Vipcl(p,y,t) is negative semidefinite
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for all p > ON,y >0, t >0 (recall {7)) if and only if C is negative
semidefinite. Thus if our estimated ﬁl matrix turns out to be negative

semidefinite, then C' will be globally concave.l3

The functional form for a unit cost function defined by (27) and the
terms 2§=1 b, DY is a {(modest) generalization of a functional form due to
McFadden [1978; 279]11%; hence we call the cost function defined by (26) the

Generalized McFadden cost function:

1
Theorem 5: C defined by (26) and (27) is a flexible {homogeneous in p)

cost function.

2 *
Proof: Step 1. Use the equations 9 C(p*,y*,t*)/apian = cijpl IY* =

BEC*(p*,y*,t*)/Bpiapj for 2 € i, < N to solve for the cij'

exactly the same as in Theorem 2. The remaining equations in (8) not satisfied

Steps 2 to 6 are

by construction turn out to be satisfied because both Cl and C¥* satisfy

(2) - (6). Q.E.D.
It turns out that the same restrictions (19) that imposed the constant

returns to scale property on the Generalized Leontief cost function will also

do the job for the Generalized McFadden cost function. We alsc have the

following counterpart to Theorem 3.

1
Theorem 6: C~ defined by (26), (27) and (19) is a flexible homogeneocus

in p and y cost function.

Proof: Repeat step 1 of Theorem 5 to determine the cij' Then follow steps

2.4 in Theorem 3 to determine the b's. Q.E.D.

Theorem T: ol defined by (26), (27) and (23) is a flexible homogeneous in p
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cost function in the class of cost functions that do not depend on time.

Proof: Repeat step 1 in Theorem 5 to determine the ¢y Then follow steps 2-L

J.
in Theorem L4 to determine the b's.

1
Theorem 8: C” defined by (26), (27), (19) and (23) is a flexible homogeneous in

p and y cost function in the class of cost functions that do not depend on time.

Proof: Repeat step 1 in Theorem 5 to determine the cij' Then use the N
equations VpCl(p*,y*,t*) = Vpc*(p*,y*,t*) to determine b,. for i =1, ..., W.
The remaining equations in (8) turn out to be satisfied because both Cl and
C* satisfy the restrictions (2)-(6), (20)}-(22) and {(24)-(26). Q.E.D.

If C, the matrix of cij‘s, is negative definite, then a locally
valid explicit dual production function to the cost function Cl defined by
(26), (27), (19) and (23) may be calculated as follows. Suppose x* = xl(p*,y*,t*)
where xl(p,y,t) is defined by (28) and x* >0y, p* >> Oy, y* > 0. Then for
(x,p,¥) in a neighborhood of (x*,p*,y*), y will be the maximal output
producible by the input vector x only if p is such that the following

ts}I‘ ~
equations are satisfied (where X' = (xl, Xyy sees xN) = (xl, x ) and b =

T
(b22, bagy eee, bNN) ):

_ 2 TTRYy T -1
(31) X, = (bl - (1/2) P, P Cply 3 x = (b + 1 Cply.

Equations (31) are simply equations (28) rewritten using the notation below
(30). Equations (28) are simply the equations which result when Shephard's

Lemma is applied to the C. defined by (26) and (27), (19) and (23). Now

define the vector of relative input prices by i = lep and eliminate q from
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(31). Since C is assumed to be negative definite for purposes of this

~,

exercise, C exists and we obtain the following quadratic equation in y_l:

(32) ¥k =v - W2 TR - BT TR - B,

For (xl, ¥X) close to (x:,ﬁ*), we may solve (32) for the right y = £{x) and
thus we have our local representation of the production function:1>

Up to this point, we have established that the Generalized
McFadden cost function defined by (26) is equivalent to the Generalized
Leontief cost function defined by (17) in terms of its flexibility, ease
of estimation, and hypothesis testing capabilities. However, if the estimated
GM cost function does not satisfy the concavity restrictions (7), then we may
readily impose these restrictions globally.

In order to impose the concavity restrictions {7) on the functional
form defined by {(26) and (27), we use the following technique due to Wiley,
Schmidt and Bramble [1973; 318]: we reparameterize the matrix ¢ = [cijl by

replacing it by minus the product of a lower triangular matrix of dimension

N-1 by ¥N-1, A say, times its transpose, AT; i.e.,

], i, ,j =1, co ey N-1 3 a,

(33) C=-AA; A= | i

a.iJ =0 for 1 < J.

Lau [1978b; h27316 shows that every positive semidefinite matrix C

(equal to -6 say) has the following representation:

T
(34) C = BDB where B = [bij], i, § =1, ees, B-1 5 Byy = 0 for i < j; and
bii i, i=1, ..., N~1, and D is a non-negative

diagonal matrix.
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Using Lau's theorem, we may show that any negative semidefinite ¢ has the

representation given by (33). This follows from the following theorem.

Theorem 9: Let C be an N-1 by N~l symmetric matrix. Then C is positive
T
semidefinite if and only if C = AA" for some lower triangular matrix A (i.e.,

A satisfies the restrictions in {(33)).

Proof: Let C be positive semidefinite. Then a B and D exist which satisfy

1/2

the restrictions in (34) by Lau's theorem. Let D be a diagonal matrix
which has the non-negative square roots of the corresponding diagonal elements

of D running down its main diagonal. Then

T BD1/2D1/2BT - (BD1/2

C = BDB~ = l/2)11 = anT

Y(BD AA

where A = BDl/2 satisfies the restrictions in (33).
On the other hand, let C = AAT. Then for any vector z, zTCz =
2Anz = (472)T(aT2) > 0. Hence C is positive semidefinite. Q.E.D.
Thus the Wiley, Schmidt and Bramble technique for imposing negative
semidefiniteness on a matrix turns out to be perfectly general {and equivalent
to Lau's technique).
Recall that input 1 played an asymmetric role in the definition
of gl, (27), and hence in the definition of Cl as well, In fact, we could

single out any input to play the agymmetric role, TFor example, define for

k=l, ...’ N:

-1 N N
(1/2) 7 Li=1,i#k Zj=1,3#k ®1jPiPj> €313 T %31°

(35) gk(p)

k 1
We may then define C (p,y,t) as in (26) except g is replaced by the above
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gk. The resulting Ck has all of the flexibility properties that C1 had.
Moreover, for each of the functional forms Ck, it is very easy to impose
globally the concavity property {T) that well behaved cost functions must
satisfy. Thus it would seem that the Generalized McFadden family of func-
tional forms would be ideal for applied work. Unfortunately, our empirical
work did not completely justify ocur high a priori hopes for this functionﬁl
form: we found that our estimated elasticities changed considerably in some
cases as we changed our "mumeraire"” good. Thus inspired by the work of

Barnett [1983], we were led to consider yet another family of cost functions.

5. A Generalized Barnett Cost Function

Consider the cost function defined by (26) except in this section,

define the function gl by:

1, ., _ N N 1/2 1/2 N XN o -1/2 -1/2
(36) g (p) = Ij, Bip g2y Py Py Py = Eiop Byoo gey 9igPiPs Py
N dpp i ib.,.=b,>034d,=4d, »0;b,,d, =0 for all i
= H=p 4PIP; 3 Pyy T Py 3 43 = dy; > 05 bygdyy = 0 for all 4.0.

1 . .
The function g depends on Py in an asymmetric way but is linearly homogeneous

in input prices p. It has (N-1){N-2)/2 non-negative b , parameters,

J

(N-1)(N-2) /2 non-negative dij parameters and N-1 unrestricted d, parameters.

However, the equality restrictions bi di = 0 set (N-1)(N-2)/2 of the parame-

Jij

ters equal to zero, so there are only N(N-1)/2 independent parameters in gl.

We call the cost function defined by (26) and (36) the Modified Barnett cost

function, since it is a straightforward modification of Barnett's [1983; 21}

Miniflex Laurent functional form from the consumer context {where "income"
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acts as a numeraire good) to the producer context where we have chosen pl to
play the role of the numeraire good. The input demand functions which
correspond to this new functional form are linear in the unknown parameters

(use (28) where g1 is defined by (36)).

Theorem 10: C* defined by (26) and (36) is a flexible (homogeneous in p) cost

function:

Proof: Step 1. Consider the following equations for 2 < i < j < N:

1 * * _3/2 *
- 3933 (pyps )y

21 1 * R /D % DOk, % % %
(37) 87C7/3p; 3py = 5oy 5 (pypy )y 7°C (p sy st )/3p;0p, .

2 % o %
’ = o
If 9 C /apiapj 0 set dij 0, and solve for b, > 0. If 3 C /aplapj < 0, set

J
21, * % %
biJ = 0 and solve for dij > 0. Now use the equations 3°C (p ,y ,t )/3piapj =
D% % % %
37C (p ,v ,t )/Bplapi for 1 = 2, 3, +es, N to solve for the di, 1=2, 3, ..o,
N. Steps 2 to 6 now proceed in the same manner as in Theorem 2. Q.E.D.
We may use the Modified Barnett cost function to test for constant

returns to scale and no technical progress, i.e., we have the following coun-

terparts to Theorems 6, T and 8:

1
Theorem 11: C” defined by (26), (36) and (19) is a flexible homogeneous in p

and y cost function.

1
Theorem 12: C” defined by (26}, (36) and (23) is a flexible homogeneous in p

cost function in the class of cost functions that do not depend on time.
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Theorem 13: C' defined vy (26), (36), (19) and (23) is a flexible homogeneous
in p and y cost function in the class of cost functions that do not depend on

time.

The next Theorem explains why we have imposed non-negativity

restrictions on the b, . 's and d;,'s which occur in (36).

13 J

Theorem 14: If the d; parameters which occur in (36) are non-negative then
the Modified Barnett cost function defined by (26) and (36) is globally con-

cave in input prices.

Proof: It can be verified that the Hessian matrices of the functions

1/2_1/2 p-'1/21) -1/2.2

-1 2 . . _
pi Pj s i 3 Py and - p; py are negative semidefinite. Hence these

functions are concave, and since a non-negative sum of concave functions is
concave, gl(p) defined by (36) is a globally concave function over p >> Op.

. 1 1 :
Since C (p,y,t) equals g (p)y plus functions which are linear in p (and hence

concave), Cl(p,y,t) is globally concave in p. Q.E.D

Theorems 13 and 14 are modifications of Theorems A.2 and A.3 in
Barnett [1983, 21-22] to the producer context. The basic idea for generating
globally concave cost functions by taking non-negative sums of concave functions
may be found in Diewert [19T1] and McFadden [1978].

Theorem 14 is a nice result in the sense that the addition of the
non-negativity constraints di > 0 makes the Modified Barnett cost function

defined by (26) and (36) globally concave in input prices. Unfortunately,



—20-

these additional non-negativity restrictions destroy the flexibility proper-
ties of gl; i.e., Theorems 10-13 are no longer true if we restrict the di to
be non-negative. If the di # 0, then it must be the case that input 1 is an
Allen-Uzawall substitute for every other input; i.e., input 1 is not allowed to
be complementary with any other input. If the bij’ dij and di parameters in
(36) are restricted to be non-negative then inputs i and j are complementary

only if dij > 0. But there are no di coefficients involving good 1, so good

J
1 cannct be complementary with any other input.lB
The above difficulty with the Modified Barnett functional form leads

ug to define the following Generalized Barnett cost function: define Cl by

(26) and g {(p) by:

1 _ N N 1/2 1/2 N N 2 -1/2 -1/?
(38) g {p) 25y Iy gay %P Py - Iip i=2,iz3 “13P1P1 Py
5N N -1/2 -1/2 2

i=2 Pj=p,i#3 SigP1 Py Py

where bi =b,, »0,d,., =4,, » 0 and e, > 0 for all i, J.

J Ji ij Ji J

There are N{N-1)/2 independent non-negative b, 's, (N-1){(N-2)}/2 independent

J

non-negative di 's and (N—2)2 independent non-negative e (note that the

1
3 38

matrix of ei 's is not taken to be symmetric). If we allowed the N-1 coef-

J

ficients €11 J=2, +ee, N to be unrestricted in sign, then the gl defined by

J

(38) would contain the gl defined by (36) as a special case. However, we do

not allow the eiJ to be negative since this would destroy the global concavity
1

of g as defined by (38).19

It can be seen that the Generalized Barnett cost function is
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linearly homogeneous in input prices. As usual, input demand functions for
the C' defined by (26) and (38) may be obtained via Shephard's Lemma; see
equations (28) where gl is defined by (38). The resulting demand functions

are linear in the unknown hi d

50 %3 and eij parameters As usual, linear hohoge—
neity in y can be imposed as C1 by imposing (19). Cl can be made independent
of time by imposing (23). Finally, Cl can be made homogeneous in y and inde-
pendent of time by imposing (19) and (23).

The major advantage of the Generalized Barnett Cost function is its
global concavity in input prices. Some disadvantages agsociated with it are:
(i) a priori, it regquires many more parameters than other flexible functional
forms, (ii) it requires the imposition of a large number of inequality
constraints on the coefficients, and (iii) even with the large number of para-
meters, we cannot prove that the cost function defined by (26) and (38) is
flexible. However, we can prove a limited flexibility result for the
Generalized Barnett functional form. We first require a definition.

Suppose that we are given two twice continuocusly differentiable {at
p* >> ON) linearly homogeneous functions, c(p) and c*(p). Suppose c¢ is such

that the following 1 + N + (N-1)(W-2)/2 equations are satisfied:
(39) (i) clp*) = c*(p*), (ii) Ve(p*) = Vc*(p*) and

(1i1) 32c(p*)/6piapJ = 32c*(p*)/3piapJ for all i, J expect i#j, i#k, Jj#k.

Then we say that ¢ is quasiflexible relative to the numeraire good k. If we

2
look at the system of N~ equations Vgc(p*) = Vec*(p*), then if c is

quasiflexible relative to good k, we have equality of the second order partial
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derivatives of ¢ and c* except possibly along the main diagonal of the matrix

th

equation Vzc(p*) = Vec*(p*) and along the k“" row (and column).20

1 N 1
Theorem 15: c¢{(p) = g (p) + Ei= b, .p, where g~ is defined by (38) is quasi-

1

flexible for any choice of the numeraire good k.

Proof: Let the numeraire good k=1. Consider the following system of

equations for 2 € i < J < N:

2 2
*® = *%{ % z %
(40) 3 clp )lapiapj 3 c*(p )/313131{j °%;
If c*, >0, set d,, = e, = e . =0 and solve for b,, » 0. If c* < 0O,
i ij ij Ji ij i
gset b,, = e, =e ., =0 and solve for d., > 0. This solves equations
id ij Ji ij

(39)(iii) when k = 1. Now use equations {39)(ii) to solve for the bii'
Equations (39)(i) will be satisfied since c(p*) = p*TVc(p*) = p*TVc*(p*) =
c*(p*) using the homogeneity properties of ¢ and c¥,

Now let the numeraire good be an arbitrary k » 2. Set ey = 0 for

J

all 1 and J except when J = k. Set d . =b,_ =0 for J = 2, 3, ..., N, j#k.?1

kJ Jk
Now consider the system of equations (40) for 2 < i < j < N, i*k, j#k.

% = = = ¥*
If ciJ > 0, set dij eiJ eJi 0 and solve for bij >19. If c* < 0, set
b = e, = = > 0. N-2 i
ij i3 eji 0 and solve for dij 0. Now solve the equations
2
) * = * = ces * - 1 3
cl(p )laplapJ clj’ J =2, 3, » N, j#¥k for non-negative blj or ejk for j

=2, 3, ses, N, J?k. Thus equations (39){iii) are satisfied by construction.

Equations (39)(i) and (ii) may now be satisfied by choosing the

bii appropriately. Q.E.D
Thus the Generalized Barnett cost function defined by (26) and (38)
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appears to be "reasonably" flexible but we cannot prove that it is completely

flexible.

6. Empirical Results

In this section we report on results obtained from estimating our
functional forms using data utilized by Berndt and Khaled [1979]. The data
contain information for the period 1947-T1 on output of U.S. Manufacturing
industries together with information on prices and quantities for four inputs:
capital (K), labor (L), energy (E) and materials (M). Although the functional
forms that we estimate have been discussed above we present them here for the
reader's convenlence. For the translog (TL) we have the system consisting of
of the logarithm of the cost function (9) together with the following N-1 share

equations for each time period t:

N .
(1) si(p,y,t) =a; + 2J=1 aijln P, + aijin yta,t+tu, 1= 1, wes, N-1

where the a4 satisfy the restrictions (10), and u; is a disturbance ternm for

h
the it share equation, i=1,2,...,N=1 and Uy is a disturbance term for (9).

Denoting u = (ul, cesy uN)T, assume that u has a miltivariate nor-
mal distribution with E{u) = 0, E(uu)T =  and that @ is constant over time.
These assumptions about the disturbances are maintained for all of our funec-
tional forms.

For our Generalized McFadden (GM) form we have the following system

of N equations in each period:

-1 N -1 -1 -1 2
= +
(42) X ¥ zj:l,J#k cink pJ + bii + biy + bitt + btty + b ¥y bttt + u,

for i =1, «e., Nand i # k;
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-2 X -1

= - + +
" (172) p Bic1,i#x CisPiPy * P * DY Kkt

with cij = cji for 1 <31, j<N,1#k,J#k, and where k is the numeraire
input. The dependent variables are input levels divided by output rather than
input expenditure levels since this makes the assumption of homoskedasticity
of the disturbances more plausible., The cost equation is not estimsted since
it contains no additional information.

For our generalized Barnett (GB) form we have the following system

of N equations for each period:

-1 N -1/2 1/2 X -3/2 -1/2 2
(3) %yy = = Big ges PagPr Pyt Tin e ges Y45P5 0 Py Py
N -3/2 2 -1/2 N -1/2 -1/2
+ (1/2) Ti=1,5#k,3%1 SigPi PyPy  — @ Li=1,3%k,5%1 S5iPiPy Py

-1 -1 2
+ + + + + + + y i= .ee i#k;
b biy bi t btty b vy b, .t ui, i=1, » N, i#k;

it tt
-1 _ N -1/2 1/2 N N -1/2 -1/2
XY = Bioy g#k PxgPe Py -~ 2 Li=1,i#k Ty=1,3#k 44P1 Py Py
N N -1/2 2 -3/2
*{1/2) B e Tya, gk S1gPr 0 PyPy

-1 -1 2
+
+ bkk + bky + bktt + btty + b ¥y + bttt u,

with bij = bji >0, dij = dji » 0 and eij » 0 for all i, j and again k is the
numeraire input. TFinally, the Generalized Leontief form is obtained from (43)
by setting dij = eij = 0 for all i and }, and by leaving the bij unconstrained.
All systems were estimated by the method of nonlinear maximum
likelihood.%2 For the GB model the non-negativity constraints were imposed by

maximizing the likelihood with respect to new parameters defined as the

squares of the original ones.?3 For the GM model the global concavity con-

-1 2
+ + + +
b .t btty b ¥y bttt + u

k
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dition was imposed using the method due to Wiley, Schmidt and Bramble [1973;
318} discussed above. Neither procedure presented any convergence problems
during the estimations.

Table 1 contains summary statistics for our estimated functional
forms. In all models the imposition of constant returns to scale or of no
technological change involves six restrictions. As is clear from the table
all models reject the hypothesis of constant returns to scale or of no tech-
nological rhange at the 5 percent level of significance since the critical
Chi-square value is 12.6.2u Although not recorded in the table the Jjoint
hypothesis of constant returns and no technological change is also clearly
rejected. Hence in the analysis below we present results only for the full
models. It is interesting to note that the choice of numeraire inputs has
very little effect on the log likelihood values and conseguently on the test
statistics for the GB model. On the other hand, the results for the GM and
GMC (Constrained Generalized McFadden) models are more sensitive. Finally, it
may be noted that imposition of concavity in the GM model causes only a slight
reduction in the value of the likelihood, regardless of the choice of
numeraire.

In Table 2, we present price elasticities and R2 values. The elasti-
cities are evaluated at the first sample point, while in Table 3 we present
them evaluated at the final sample point in order to give some idea about the
variaticn over the period. Table 2 reinforces our finding from Table 1 that
using different inputs as the numeraire in the GB model does not lead to very

different results. Exactly the same pattern of substitutability and comple-
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mentarity prevails regardless of the choice of numeraire, and the values of
the elasticities are very similar. Indeed the differences between elastici-
ties resulting from the choice of numeraire input in the GB model appear to be
of the same order of magnitude as the differences between elasticities in the
traditional GL and TL models. On the other hand, for the GM and GMC models,
some of the elasticities wvary considerably depending on which input is used as
the numeraire. In the GM model only 8 of the 16 elasticities have the same
sign for all four numeraires, while in the GMC model only ten have the same
sign. A comparison of elasticities between the GM and GMC models suggests
roughly comparable results in terms of signs and magnitudes. Of course in the
GM model the own price elasticities are constrained to be negative; however in
the GM model, the own elasticities for labor and materials are only slightly
positive,

The R° values for the GB model are comparable to those for the GL
model and do not vary mich with the choice of numeraire.2’ Indeed changing the
numeraire changes the R2 value by three percentage points or fewer in all
instances. For the GM and GMC models, the R2 values are the same order of
magnitude as for the other models, but are more sensitive to the choice of
numeraire, particularly for the materials equation., In general, all R2 values
appear to be satisfactory, particularly in view of the fact that the dependent
variables are input-output ratios rather than input levels.

Table 3 contains estimates of price elasticities evaluated at the
final sample point. Since the same general conclusions may be drawn from

Table 3 and from Table 2 there is no need to discuss them further. In general,
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a comparison of the first and last sample point reveals that the elasticities
varied the least for the TL and GL models, and the most for the GM and GMC
models.

In Table 4, we summarize our findings on the effects of technological
change on input use and total cost for the first and last sample points. Since
the results for the GM and GMC models are virtually identical we provide only
those for the GM model. The table entries are 93&n xi(p,y,t)/at for inputs i =
K,L,E,M and 94n C(p,y,t)/3t. Clearly disembodied technological change has
been negligible in the periocd, with the effect on total cost being essentially
zero as estimated by all functional forms.26 The effect on individual inputs
varies, depending on the functional form and numeraire input, with no clear
pattern emerging. In any event the effects are small.

In Table 5 we summarize our findings on scale effects. Once again
the GMC and GM results are virtually identical and we present only those for
the GM model. The table entries are 9&n xi(p,y,t)lazn y for each input 1 =
X,L,E,M and 34n Clp,y,t)/3%n y. The inverse of the latter is often used as a
measure of returns to scale.2l All functional forms yield plausible estimates
of returns to scale except possibly for the TL medel with a final year cost
elasticity of .62, implying very high economies of scale. Once again the
choice of numeraire in the GB model affects the estimates mich less than it
does in the GM model. For the individual input elasticities, the estimates are
fairly stable across functional forms for labor and materials but not for capi-
tal and energy. It is worth noting that labor and materials account for

roughly 90 percent of total costs {with labor about 30 percent and materials
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about 60 percent) and hence their behavior has a dominant effect on the
elasticity of total cost with respect to output.28

In all cases the labor elasticity is below, and the materials elasti-
city above, the total cost elasticity. The materials elasticity is generally
Just slightly less than unity indicating, not surprisingly, few economies in
the major cost component. The capital and energy estimates vary from positive
to negative depending on functional form, and it is not clear what conclusion
can be reached about possible economies for these inputs. However, the fact
that they each account for about only 5 percent of total cost suggests that
they will likely not contribute substantially to overall economies.

In the discussions above we have found that the GM {and GMC) model
results are more sensitive to the choice of numeraire than are those for the
GB model. Inspection of the GM input demand equations (42) suggests a
possible explanation. For each non-numeraire equation, all the price terms
on the right hand side have the numeraire price as a divisor, while for the
numeraire good they have the square of the numeraire prices as a divisor,
Therefore unless there is a high correlation between all the price series,
there may be a substantial difference in results due to varying the numeraire
input. On the other hand for the GB model this problem does not arise. TFor
each non-numeraire input there is a set of terms that does not invelwve the
numeraire price, a set in which it multiplies other prices in squared form,
and a set in which it divides other prices in square root form. For the
numeraire good there is a set of terms in which it multiplies prices, and one

in which it divides prices, raised to a power. Thus varying the numeraire may
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simply lead to different parameters being set to zero without any substantial

change in the results. This is consistent with our findings.

T. Conclusions

The primary purpose of this paper is to propose and test empirically
methods for imposing curvature conditions globally in the context of cost
function estimation. We suggest two methods; the first builds on the work of
McFadden [1978] and Lau [1978b], while the second is developed from the work
of Barnett [1983]. We estimate these models using data utilized by Berndt and
Khaled [1979] and find that they yield results that are generally comparable,
in terms of price, output and technological change effects, to those given by
traditional flexible forms such as the Translog and Generalized Leontief.

One drawback of our new forms is that they require one input to be
singled out as the numeraire input, and hence there are potentially as many
sets of estimated parameters as there are inputs. Our empirical results
suggest that this is a more serious problem for the GM model than it is for
the GB model. Indeed the latter appears to be sufficiently flexible so as to
yield results that do not vary much with the choice of numeraire input, at
least with the data set used here. However, the GM model should work well if
the variability in the data p,y,t is "reasonably" small so that any quadratic
approximation should yield "roughly" equivalent results.

Qur techniques can readily be adapted to profit function estimation
when there is only one fixed factor: simply reinterpret our cost function
c(p,y,t) as the negative of a profit function, -m{p,v,t), where w(p,y,t) =

maxz{p-z: ZESt(y)}. The variable y is now interpreted as the non-negative
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amount of a fixed factor used during the period, p is a positive wvector of
variable input and output prices, z is a net output vector (inputs are indexed
with a negative sign) and St(y) is a period t technology set that depends on y.
Our old input vector x is now replaced with -z. With these changes, all of our

analysis carries through (except for the translog case).29
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Footnotes

#0ur thanks to E.R. Berndt for his valuable comments.

l. The two most commonly used flexible functional forms are the
Generalized Leontief introduced by Diewert [1971] and the translog introduced
by Christensen, Jorgenson and Lau [1971; 1973] and Sargan [1971]. One concept
of flexibility was defined by Diewert [19Th; 113] and the equivalence of

various definitions of flexibility was demonstrated in Barnett [1983; 19-.20].

2. For definitions and alternative characterizations of these cur-

vature concepts, see Diewert, Avriel and Zang [197T}.

3. When Jorgenson and Fraumeni [1981] applied their version of
Lau's [1978] method for imposing curvature conditions in their 36 industry
translog study of U.S. industries, they ended up setting 204 out of 360 second
order parameters equal to zero. Alt [1982] and Berndt [1984] explain the
various methods for imposing curvature conditions either globally or over a
region.

4, For example, functional forms for production and utility func-
tions used in applied general equilibrium models should satisfy curvature con-
ditions globally. For an excellent review of the applied general equilibrium

modelling approach, see Shoven and Whalley [1984] .

S. See the discussion in White [1980) and Elbadawi, Gallant and

Souza [1983}.

6. Much of this analysis is in Woodland [1976! and Khaled [1978].
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T. The term "differential approximation" is due to Lau [19Th; 18L],
On the equivalence of differential approximations to other concepts of second

order approximations, see Barnett [1983; 19-21]},

8. 1In view of the symmetry conditions, a,, = a

ij 11 for all i, Jj, any

one of these N constraints is redundant.

9. ge also need aNy = 0 but this is implied by a.iy = 0 for i=1,
ssay N-1 and & By ° 0 which is part of (10).
i=1

10. ay, =0 is implied by (10) and (14).
11. 5; is Ohta's [1974] dual rate of returns to scale.

2
2. i L X I.p. i
1 Instead of using our terms ;P;P4 and byy( lpl)y in (17),
Wocdland used the terms Eibipiy2 and byy(Zipi). Our parameterization has the
advantage that the demand equations (18) have constant terms b, on the right

hand sides.

13, This very important observation is due to Lau [19Th; 196].

14, McFadden restricted the coefficients of E in a complex way so
that good 1 was substitutable with every other good. Our functional form (26)
also bears a superficial resemblance to the normalized quadratic profit func-
tion derived by Lau [1978a; 19%4}; however, Lau's function form is dual to a
quadratic production function which loses its flexibility in the class of

linearly homogeneous production functions.

15. Note that the production function is linearly homogeneous as it

should be in this case.
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16. Llau's Theorem is an advance over the usual representation
theorem derived in good matrix analysis texts (e.g., see Strang [1976; 2ui5])
which states that PCPT = BDBT where C, B and D are subject to the restrictions
in (34) and P is a permutation matrix; i.e, Lau's Theorem allows us to set P =
I, an identity matrix. Lau calls the decomposition of C, given by (34), the
Cholesky decomposition of C where Strang [1976; 241] calls the decomposition
of C defined by C = AAT, where A satisfies the restrictions in (33), the

Cholesky decomposition of C.

17. Inputs i and j are Allen [1938; 504] - Uzawa [1962] substitutes

2
(complements) if and only if 3xi(p,y,t)/ap = 3 C(p,y,t)/apidpj >0 (<0 ).

J

18. Thus the Modified Barnett functional form defined by (26) and
(36) with the d, » 0 is similar to the functional form defined by McFadden
[1978; 279-280]. In fact, we may obtain exact counterparts to Theorems 10-1k

s e 2 -1/2 -1/2 -1 2
if in definition (36), we replace _dijplpi pJ by—dijpl (pi+pj)

« In both
cases, if dij > 0, then inputs i and } are complements but inputs 1 and i and
1 and j are substitutes (when di > 0 for i =2, .v., N). Thus there is a con-

nection between Barnett's [1983; 21-22] Theorems A.2 and A.3 and McFadden's

[1978; 279] Lemma L.

19. We can prove that ¢l defined by (26) and (38) is globally con-

cave in input prices using the same technique as used in Theorem 1k,

20. Recall that the linear homogeneity of c¢ and c* implies that

2
Ve(p*)p* = Vock(p*)p* = Oy
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21. We do not have to set these ka = 03 we could try to solve the

*
equations agc(p*)/apkdpj = ckj for j =1, see, N, J¥k for the bkj after all of

the other parameters have been determined, but the resulting bkj need not be

non-negative.
22. 1In the estimations, we used an algorithm due to Fletcher [1972].

23. It is interesting that although the GB model potentially con-
tains more nonzero parameters {30) than the GL, GL or GM models (21), imposi-
ticn of the non-negativity constraints in practice never resulted in more
nonzero parameters than in the other models. For three of the mumeraire
choices there were 21 nonzero parameters in the GB model and for the other

there were 20.

24h. We ignore here the inference problems associated with the GB
and GMC models. For the GB model, our Chi-square tests are conditional on the
non-negativity constraints for the zero parameters being binding, and for
three of the GMC models, conditional on at least one of the determinantal ine-
qualities (that principal minors alternate in sign) being binding. As far as
we know, the (unconditional) sampling theory involved in maximum likelihood

estimation subject to inequality restrictions has not been developed.

2
25. The R™ wvalues for the TL that appear in Table 2 have been
obtained by using the parameter estimates from the TL share equations to
calculate predicted input-cutput ratios. This may explain why they differ

somewvhat from those for the other forms.

26. Berndt and Khaled [1979] reach essentially the same conclusion
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with their estimates of the "dual rate of total cost diminution",

-31nC{p,t,y)/dt, ranging from .00T19 to -.0003 for various models.
27. See, for example, Berndt and Khaled [1979] or Ohta [19TL4].

28. 1In 1947 the actual cost shares for X,L,E and M were .051, .247,
.0L43 and .659, while in 1971 they were .OLT, .289, .0L5 and .619. Of course

the share-weighted sum of the input elasticities is equal to the cost elasti-

city.

29. Minus profits will be negative and we cannot take the log of a

negative nunber.
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Table 1

Summary Statistics

Test Statistic for

Ko Local
Functional Numeraire Technical Concavity
Form Input Log L CRTS Change Viclations
GB K 523.4 64.3 29.7 0
L 52k.1 66.0 31.5 0
E 523.6 64.9 30.5 0
M 523.5 64,2 37T 0
GM K 518.6 58.1 271 25
L 521.7 46.1 15.8 25
E 526 .7 6T.7 32.3 25
M 521.5 57.2 17.3 0
GMC K 517.1 55.9 25.3 0
L 520.9 47.2 18.7 0
E 526.3 67.8 Lh.3 0
M 521.5 57 .2 19.5 0
GL - 522.9 59.4 17.0 0
TL - 508.0 44,6 21.0 6

Notes:
1. GMC is the GM model constrained to be globally concave.

2, Log L is the log likelihood for the full model allowing for technical
change and returns to scale.

3, The test statistic for CRTS is minus twice the difference between the log
likelihoods in the full model and that with CRTS imposed. The test statistic
for the no technical change is defined analagously.

i, Concavity violations are sample points at which the estimated cost
function is not concave. The sample size 1is 25.

5. The log likelihood for the TL model.is not comparable with the others
since it involves cost shares rather than input-output ratios as the dependent
variables.



Table 2

Input Price Elasticities and R2 Values

GB

Numeraire K L I M GL TL
KK -.26 -.33 -.21 -.h7 ~-.2h -.3k
KL 22 .23 .18 .20 .36 U8
KE -.0h -.03 -.02 -.02 -.08 -.09
KM .08 .13 .05 .28 -0k -.05
LK .05 .05 0L Ob .08 .11
LL -.31 -.28 -.25 -.35 -.33 -.20
LE 11 .07 .07 .06 .12 .08
LM .16 .16 .1k .25 .13 01
EK -.05 -.03 -.03 -.03 -.11 -.12
EL Hh W41 L2 «37 JTh R
EE -.T0 -o5T -.60 -.50 -.73 -.62
EM .10 .19 21 .16 .10 .30
MK .00 01 .00 .02 .01 -.01
ML 06 .06 .05 .09 .05 01
ME .01 01 01 .01 .01 .02
MM -.07 -.08 -.07 -.13 -.05 ~.02
R® K .8 87 .86 .81 .86 .68
L 97 .96 .96 .96 .97 .96
E .86 .83 .83 .86 .83 o7

M .70 .71 70 .T1 +T0 .82



Table 2 Continued

Input Price Elasticities and R2 Values

GM GMC
Numeraire K L E M K L E
KK -.08 -3 -.b2 -.38 ~-.15 -.48 -,k
KL .35 Kol A2 .27 .09 .12 J1
KE .00 -.08 .09 -.09 -.02 -1 .09
KM -.28 -.43 -.09 .19 .07 -.13  -.06
LK .08 .20 .09 .06 .02 .16 .09
LL .02 -.08 -.11 -.21 -.08 -.29 =11
LE .12 .13 0L .10 .10 .12 Ok
LM -.22 -.26 -.03 .06 -.0b 02 -,02
EK .00 -.11 A1 -.12 -.02 ~o1h .10
EL 67 .76 +26 55 .58 68 .24
EE -.92 -.T0 -.61 -.T1 -.8L -.T1  -.61
- EM 2k .0k 2k .27 .29 A7 .27
MK -.02 -.0b -.01 .02 01 -.01  -,01
ML -.08 -.10 -.01 .02 -.02 01 -.01
ME 02 .00 .02 .02 .02 .01 .02
MM .09 .13 .00 -.06 -.01 -.01 -.01
R° X .84 .18 .86 .83 .80 6 .86
L .97 .97 .96 .97 .96 97 .96
E .92 .85 .86 .85 91 .85 87

M .53 Th BT <75 .6Lh .73 67




Notes to Table 2

1. KL means the elasticity of demand for capital with respect to the price of
labor. Other entries are defined analagously.

2. The R° values are calculated for each equation separately as 1 - var(e)/var(z)
where var(€) is the variance of the residuals and var{z) is the variance of the

relevant dependent variable,
3. Price elasticities are evaluated at the first sample point.

L. The GM model with M as numeraire satisfies the global cencavity con-
diticns, hence the GM and GMC estimates are the same in this case.



Table 3

Input Price Elasticities

GB

Numeraire K L E M GL TL
KK -.49 -.h2 -.52 =27 -.36 -.26
KL .58 L6 .60 .10 48 .56
KE -.14 -.10 -.15 -.03 -.09 -.11
KM Ob .06 .06 .20 -.0h -.19
1K .10 .08 .10 .02 .08 .09
LL -.46 -.51 -.51 -.54 -o37 -2k
LE .18 .18 <20 16 .1k 07
M .18 .25 .22 .37 o1k 07
EK -.15 =11 ~-o17 -.03 -.09 -.12
EL 1.20 1.23 1.31 1,07 .95 .48
EE -1.1k4 -1,18 -1.25 ~1.03 -.95 -.63
EM .10 .05 .10 ~-.02 .09 27
MK .00 .01 .01 .02 .00 -.01
ML .09 .12 .11 .18 .07 Nolt
ME 01 .00 .01 .00 .01 .02
MM -.10 -.13 -.11 -.20 -.07 -.04

GM GMC

Numeraire X L E M K L E
KK -.76 -.16 -.26 -.26 - 69 -.18 -.28
KL 61 L2 b1 43 .90 .31 50
KE =57 -0k -.27 -.09 -.51 -.06 -.27
KM .71 -.21 -.08 -.09 .30 -.06 -.05
LK .10 07 .10 ' 07 .15 .05 .10
LL .08 .00 .27 —-.57 -.27 -.11 -.29
LE .24 .07 .21 .15 21 .06 21
LM - -.13 —.04 .35 -.08 01 -.02
EK -.60 -.05 -.29 -.09 -.55 -.06 -.29
BEL 1.54 W43 1.38 .98 1.33 .39 1.h1
EE -1.25 b1 -1.39 -.Th  -1.15 -.42 <140
EM .31 .02 .31 -.14 3T .10 27
MK .06 -.02 -.01 -.01 .03 ~.01 .00
ML -.21 -.07 -.02 W17 -0k .00 -.01
ME .02 .00 02 -.01 .03 .01 .02
MM .13 .08 .00 -.15 -.01 -.00 -.01

Notes:
1. See Table 2.

2, Flasticities are evaluated at the last sample point.

T . 7 T T 7O 70 Nelk]



Table L

Effect of Technological Change on Inputs and Total Cost

GB
Numeraire K L E M GL L
Input X .0k .06 .06 .0b 0L .02
5 .01 W01 01 .01 0l .00
E .05 .05 .01 .05 .04 .01
M .00 .00 .00 .00 .00 -.01
Input K —.Ol -Ol ‘01 -001 -01 -Oh-
L .00 .00 00 .00 .00 .01
E ~-.01 01 -.06 -.01 .00 .03
M .00 .00 -,01 .00 .00 .01
Total Cost .00 .00 .00 .00 .00 01
GM
Numeraire K L E M
Input K .05 .02 .06 .0b
L .01 .00 01 01
B .06 .02 05 .0l
M 01 .00 .00 .00
Total Cost 01 .00 .01 .01
Input K ~.03 .02 .00 .01
L -.02 101 —.01 .00
E -COI'" 003 -.03 .00
M 00 .00 .00 .00
Total Cost -.01 .00 .00 .00
Notes:

l. The first 5 rows for each form are for the first sample pericd and the last
5 are for the final sample period.

2. Table entries are 34n x,(p, y, t) / 3t for input i and 3%n C(p, y, t) / o
for total cost. .



Table 5

Output Elasticities of Input Demand and Total Cost

GB
Numeraire K L E M GL TL
Input K -.01 -.06 -.06 -.0k .07 .21
L 61 .59 W57 .63 67 .80
E .07 J1h .08 30 .16 .28
M .93 .93 .93 <95 Ok 1.08
Total Cost .76 .76 .75 <79 .79 .93
Input K .5}4 .)'.'T .51 136 l!‘l'2 -.20
L T2 .68 .69 .66 .70 a52
E 46 U1 A6 .31 .30 .00
M .96 .96 .96 .05 .95 .79
Total Cost B4 .83 .83 A1 .82 62
GM
Numeraire K L E M
Input X -.25 .19 -.24 ,01
L .58 15 .56 b1
E .40 o3k .03 11
M .86 95 .90 .96
Total Cost .68 .83 T2 .79
Input X Oh .28 .53 40
L .00 .69 .71 .66
E .99 .12 .56 .29
M .98 .93 .95 .96
Total Cost 95 .79 B4 .B1
Notes:

l. See note 1, Table L.

2. Table entries are 3&n x_(p, y, t) / 3¢n y for input i and 3&n C{p, y, t) / 94n y
for total cost. *



